cryptosky-report/report.bib
Andy Sotheran 0ed655e9ad 28/04 3
2019-04-28 17:51:20 +01:00

511 lines
14 KiB
BibTeX

@inproceedings{SaTdpsmm,
title={Sentiment analysis of Twitter data for predicting stock market movements},
author={Pagolu, Venkata Sasank and Reddy, Kamal Nayan and Panda, Ganapati and Majhi, Babita},
booktitle={2016 international conference on signal processing, communication, power and embedded system (SCOPES)},
pages={1345--1350},
year={2016},
organization={IEEE},
url = {https://arxiv.org/pdf/1610.09225.pdf}
}
@inproceedings{nlAeiBTCPSO,
title={Non-linear autoregressive with exogeneous input (NARX) Bitcoin price prediction model using PSO-optimized parameters and moving average technical indicators},
author={Indera, NI and Yassin, IM and Zabidi, A and Rizman, ZI},
booktitle={Journal of Fundamental and Applied Sciences. Vol.35, No.35},
pages={791--808},
year={2017},
organization={University of El Oued},
url = {https://www.ajol.info/index.php/jfas/article/viewFile/165614/155073}
}
@inproceedings{ISO9000,
title={Quality management principles:ISO9000-IS9001},
author={ISO},
booktitle={},
pages={},
year={2015},
organization={ISO},
url={https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100080.pdf}
}
@inproceedings{BTCFTsent,
title={Predicting Bitcoin price fluctuation with Twitter sentiment analysis},
author={Evita Stenqvist, Jacob Lonno},
booktitle={},
pages={},
year={2017},
organization={Diva},
url = {http://www.diva-portal.org/smash/get/diva2:1110776/FULLTEXT01.pdf}
}
@inproceedings{BTCRNN,
title={Predict Tomorrows Bitcoin (BTC) Price with Recurrent Neural Networks},
author={Orhan Gazi Yalcin},
booktitle={},
pages={},
year={2018},
organization={Towards Data Science},
url = {https://towardsdatascience.com/using-recurrent-neural-networks-to-predict-bitcoin-btc-prices-c4ff70f9f3e4}
}
@inproceedings{StPNSentA,
title={Stock Predictions through News Sentiment Analysis},
author={Intel-Corporation},
booktitle={},
pages={},
year={2017},
organization={Code Project},
url = {https://www.codeproject.com/Articles/1201444/Stock-Predictions-through-News-Sentiment-Analysis}
}
@inproceedings{MLBTCpred,
title={Predicting the Price of Bitcoin Using Machine Learning},
author={Sean McNally, Jason Roche, Simon Caton},
booktitle={2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)},
pages={344--347},
year={2018},
organization={IEEE},
url = {https://ieeexplore.ieee.org/abstract/document/8374483}
}
@inproceedings{SearchTweets,
title={Search Tweets},
author={Twitter},
booktitle={},
pages={},
year={2018},
organization={Twitter Developers},
url = {https://developer.twitter.com/en/docs/tweets/search/overview}
}
@inproceedings{ConStream,
title={Consuming streaming data},
author={Twitter},
booktitle={},
pages={},
year={2018},
organization={Twitter Developers},
url = {https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html}
}
@inproceedings{TweepyStream,
title={Streaming With Tweepy},
author={Joshua Roesslein},
booktitle={},
pages={},
year={2009},
organization={Tweepy},
url = {http://docs.tweepy.org/en/v3.4.0/streaming_how_to.html}
}
@inproceedings{PolClassPatients,
title={Using Linked Data for polarity classification of patients experiences},
author={Mehrnoush Shamsfard, Samira Noferesti},
booktitle={Journal of Biomedical Informatics},
pages={6-19},
year={2015},
organization={Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S1532046415001276}
}
@inproceedings{LexiconSocSent,
title={Social media sentiment analysis: lexicon versus machine learning},
author={Chedia Dhaoui, Cynthia M. Webster, Lay Peng Tan},
booktitle={Journal of Consumer Marketing, Volume 34. Issue 6},
pages={},
year={2017},
organization={Emerald Insight},
url = {https://www.emeraldinsight.com/doi/pdfplus/10.1108/JCM-03-2017-2141}
}
@inproceedings{VADERPaper,
title={VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text},
author={C.J. Hutto and Eric Gilbert},
booktitle={Eighth International Conference on Weblogs and Social Media (ICWSM-14)},
pages={},
year={2014},
organization={Ann Arbor, MI},
url = {https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8109/8122}
}
@inproceedings{WisCrowds,
title={Wisdom of Crowds},
author={Will Kenton},
booktitle={},
pages={},
year={2018},
organization={Investopedia},
url = {https://www.investopedia.com/terms/w/wisdom-crowds.asp}
}
@inproceedings{NNDLBegin,
title={A Beginner's Guide to Neural Networks and Deep Learning},
author={Skymind},
booktitle={A.I. Wiki},
pages={},
year={2018},
organization={Skymind},
url = {https://skymind.ai/wiki/neural-network}
}
@inproceedings{WhatNN,
title={What is a neural network},
author={Jonas DeMuro},
booktitle={World of tech},
pages={},
year={2018},
organization={techradar},
url = {https://www.techradar.com/uk/news/what-is-a-neural-network}
}
@inproceedings{SupdictL,
title={Supervised dictionary learning},
author={Mairal, J., Ponce, J., Sapiro, G., Zisserman, A. and Bach, F.R., },
booktitle={Advances in neural information processing systems },
pages={1033--1040},
year={2009},
organization={NIPS Proceedings},
url = {http://papers.nips.cc/paper/3448-supervised-dictionary-learning}
}
@inproceedings{ErrorProp,
title={Learning internal representations by error propagation},
author={Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J},
booktitle={},
pages={},
year={1985},
organization={California Univ San Diego La Jolla Inst for Cognitive Science},
url = {https://apps.dtic.mil/docs/citations/ADA164453}
}
@inproceedings{BeginLSTMRNN,
title={A Beginner's Guide to LSTMs and Recurrent Neural Networks},
author={Skymind},
booktitle={A.I. Wiki},
pages={},
year={2018},
organization={Skymind},
url = {https://skymind.ai/wiki/lstm}
}
@inproceedings{RNNLSTMtds,
title={Recurrent Neural Networks and LSTM},
author={Niklas Donges},
booktitle={},
pages={},
year={2018},
organization={Towards Data Science},
url = {https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5}
}
@inproceedings{NNEgrad,
title={A Gentle Introduction to Exploding Gradients in Neural Networks},
author={Jason Brownlee, PhD.},
booktitle={},
pages={},
year={2017},
organization={Machine Larning Mastery},
url = {https://machinelearningmastery.com/exploding-gradients-in-neural-networks/}
}
@inproceedings{RNNvanishGrad,
title={Recurrent Neural Networks (RNN) - The Vanishing Gradient Problem},
author={Super Data Science Team},
booktitle={},
pages={},
year={2018},
organization={Super Data Science},
url = {https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem}
}
@inproceedings{LSTM,
title={Long short-term memory},
author={Hochreiter, Sepp and Schmidhuber, Jurgen},
booktitle={Neural computation, Volume 9. 8},
pages={1735--1780},
year={1997},
organization={MIT Press},
url = {https://www.bioinf.jku.at/publications/older/2604.pdf}
}
@inproceedings{LSTMdia,
title={Understanding LSTM and its diagrams},
author={Shi Yan},
booktitle={},
pages={},
year={Mar 13, 2016},
organization={Medium},
url = {https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714}
}
@inproceedings{LSTMmaths,
title={Understanding LSTM Networks},
author={Christopher Olah},
booktitle={},
pages={},
year={2015},
organization={},
url = {https://colah.github.io/posts/2015-08-Understanding-LSTMs}
}
@inproceedings{LSTMforetime,
title={Using LSTMs to forecast time-series},
author={Ravindra Kompella},
booktitle={},
pages={},
year={2018},
organization={Towards Data Science},
url = {https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f}
}
@inproceedings{TensorFlow,
title={Tensorflow: A system for large-scale machine learning},
author={Abadi, Martin and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Irving, Geoffrey and Isard, Michael and others},
booktitle={12th Symposium on Operating Systems Design and Implementation 16)},
pages={265--283},
year={2016},
url={https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf}
}
@inproceedings{OptSGD,
title={Optimization: Stochastic Gradient Descent},
author={Stanford},
booktitle={UFLDL Tutorial},
pages={},
year={},
url={http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent}
}
@inproceedings{Optimisers,
title={What are differences between update rules like AdaDelta, RMSProp, AdaGrad, and Adam},
author={Rajarshee Mitra},
booktitle={},
pages={},
year={2016},
organization={Quora},
url={https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM}
}
@inproceedings{OptVariants,
title={Variants of rmsprop and adagrad with logarithmic regret bounds},
author={Mukkamala, Mahesh Chandra and Hein, Matthias},
booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
pages={2545--2553},
year={2017},
organization={JMLR.org},
url={https://arxiv.org/pdf/1706.05507.pdf}
}
@inproceedings{OverOpt,
title={Overview of different Optimizers for neural networks},
author={Renu Khandelwal},
booktitle={},
pages={},
year={2019},
organization={Medium},
url={https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3}
}
@inproceedings{Adam,
title={Adam: A method for Stochastic Optimization},
author={Diederik P. Kingma, Jimmy Lei Ba},
booktitle={arXiv preprint arXiv:1412.6980},
pages={},
year={2014},
organization={arXiv},
url={https://arxiv.org/pdf/1412.6980.pdf}
}
@inproceedings{StudyNBC,
title={An empirical study of the naive Bayes classifier},
author={Rish, Irina and others},
booktitle={IJCAI 2001 workshop on empirical methods in artificial intelligence},
volume={3},
number={22},
pages={41--46},
year={2001},
url={https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf}
}
@inproceedings{TFIDFBOW,
title={A Beginner's Guide to Bag of Words and TF-IDF},
author={Skymind},
booktitle={A.I Wiki},
pages={},
year={2018},
organization={Skymind},
url={https://skymind.ai/wiki/bagofwords-tf-idf}
}
@inproceedings{SpamCScratch,
title={Spam Classifier in Python from scratch},
author={Tejan Karmali},
booktitle={},
pages={},
year={Aug 2, 2017},
organization={Towards Data Science},
url={https://towardsdatascience.com/spam-classifier-in-python-from-scratch-27a98ddd8e73}
}
@inproceedings{TweepyDoc,
title={Tweepy Documentation},
author={Joshua Roesslein},
booktitle={},
volume={},
number={},
pages={},
year={2009},
url={http://docs.tweepy.org/en/v3.5.0/}
}
@inproceedings{TFvsThe,
title={Tensorflow Vs. Theano: What Do Researchers Prefer As An Artificial Intelligence Framework},
author={Srishti Deoras},
booktitle={},
volume={},
number={},
pages={},
year={2017},
organization={Analytics India},
url={https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework}
}
@inproceedings{btcCharts,
title={},
author={bitcoincharts},
booktitle={},
pages={},
year={},
organization={Bitcoin Charts},
url={http://api.bitcoincharts.com/v1/csv/}
}
@inproceedings{langdectNLTK,
title={Detecting Text Language With Python and NLTK},
author={Alejandro Nolla},
booktitle={},
pages={},
year={},
organization={Alejandro Nolla Blog},
url={http://blog.alejandronolla.com/2013/05/15/detecting-text-language-with-python-and-nltk/}
}
@inproceedings{LanNgram,
title={A tutorial on Automatic Language Identification - ngram based},
author={Practical Cryptography},
booktitle={},
pages={},
year={},
organization={Practical Cryptography},
url={http://practicalcryptography.com/miscellaneous/machine-learning/tutorial-automatic-language-identification-ngram-b/}
}
@inproceedings{StemvsLem,
title={What is the difference between stemming and lemmatization},
author={Tita Risueno},
booktitle={},
pages={},
year={Feb 26, 2018},
organization={Bitext},
url={https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/}
}
@inproceedings{RegularisationSc,
title={Neural Network Bias: Bias Neuron, Overfitting and Underfitting},
author={Missing Link AI},
booktitle={},
pages={},
year={},
organization={Missing Link AI},
url={https://missinglink.ai/guides/neural-network-concepts/neural-network-bias-bias-neuron-overfitting-underfitting/}
}
@inproceedings{dropoutM,
title={Dropout in (Deep) Machine learning},
author={Amar Budhiraja},
booktitle={},
pages={},
year={Dec 15, 2016},
organization={Medium},
url={https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5}
}
@inproceedings{dropoutKeras,
title={Dropout},
author={Keras Team},
booktitle={},
pages={},
year={},
organization={Keras},
url={https://keras.io/layers/core/#dropout}
}
@inproceedings{NValgor,
title={Naive Bayes},
author={scikit-learn developers},
booktitle={},
pages={},
year={},
organization={Scikit-Learn},
url={https://scikit-learn.org/stable/modules/naive_bayes.html}
}
@inproceedings{SpamOrHamGit,
title={Spam-or-Ham},
author={Tejan Karmali - tejank10},
booktitle={},
pages={},
year={Aug 2, 2017},
organization={Github},
url={https://github.com/tejank10/Spam-or-Ham}
}
@inproceedings{MAPE,
title={Mean absolute percentage error (MAPE)},
author={Stephanie},
booktitle={},
pages={},
year={Sep 8, 2017},
organization={Statistics HowTo},
url={https://www.statisticshowto.datasciencecentral.com/mean-absolute-percentage-error-mape/}
}
@inproceedings{RMSEMAE,
title={Choosing the Right Metric for Evaluating Machine Learning Models},
author={Alvira Swalin},
booktitle={},
pages={},
year={Apr 7, 2018},
organization={Medium},
url={https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4}
}
@inproceedings{MSE,
title={Machine learning: an introduction to mean squared error and regression lines},
author={Moshe Binieli},
booktitle={},
pages={},
year={Oct 16, 2018},
organization={Medium},
url={https://medium.freecodecamp.org/machine-learning-mean-squared-error-regression-line-c7dde9a26b93}
}
@inproceedings{MBE,
title={MAE and RMSE Which Metric is Better},
author={JJ},
booktitle={},
pages={},
year={Mar 23, 2016},
organization={Medium},
url={https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d}
}
@inproceedings{TwitterTerms,
title={Developer Agreement and Policy},
author={Twitter},
booktitle={},
pages={},
year={Effective: May 25, 2018},
organization={Twitter Corp.},
url={https://developer.twitter.com/en/developer-terms/agreement-and-policy.html}
}