@ University of
Reading
Opinion Mining and Social Media

Sentiment Analysis in the Prediction of
Cryptocurrency Prices

School of Mathematical, Physical and Computational Sciences
Indivdual Project - CS3IP16

Student: Andrew Sotheran
Student Number: fr005432

Supervisor: Kenneth Boness
Word Count: Place Holder

Submission date: Place Holder

1 Abstract

The volatility of the stock markets is an aspect that is both hard to predict and to
mitigate particularly when relating to the cryptocurrency market. Commodities such
as cryptocurrencies are profoundly volatile and have attracted investors in an attempt
to make quick profits on the market. These financial commodities are subject to
the whim of public confidence and platforms such as Twitter and Facebook are most
notably utilised to express opinions. Extrapolating sentiment from such platforms has
been used to gain insight into topics across industries, thus applying it to crypto-market
analysis could serve to show a relationship between public opinion and market change.

This project looks into public perception of the cryptomarket, by analysing Bitcoin-
related tweets per hour for sentiment changes that could indicate a correlation to
market fluctuations in the near future. This is achieved by training a recurrent neural
network on the severity changes of historical sentiment and price over the past year
every hour. The predictions are then shifted forward in time by 1 hour to indicate the
corresponding Bitcoin price interval.

2 Acknowledgements

I would like to express my gratitude to Dr. Kenneth Boness for his continued support
and guidance throughout this project.

Secondly, I want to express gratitude to PhD. Jason Brownlee, of Machine Learning
Mastery for having clear and thorough explanations of machine learning concepts and
metrics.

I would also like to thank my family for their support during the development of this
project.

machinelearningmastery.com
machinelearningmastery.com

3 Glossary

Bull(ish) /Bear(ish) Markets - Relates to a trend of the market price increasing and
decreasing respectively

Highs/Lows - The highest and lowest trading price of a giving period
Fiat Currency - A currency without intrinsic value that has been established as money
BTC - Bitcoin’s stock symbol

Twitter - Online social media platform, which allows users to post information or
express opinions through messages called "Tweets"

Tweets - The name given for messages posted on the Twitter platform, which are
restricted to 280 characters.

Hashtag - Is a keyword or phrase used to describe a topic and allows the tweets to be
categorised.

Fomo (Fear of Missing Out) - Is used to describe buying behaviour when stocks are
moving suddenly and more buyers appear to enter all of a sudden.

Shorting - Or short sale, is the sale of an asset that the investor buys shares and
immediately sells them, hoping to make a profit from buying later at a lower price.

Doubling Down - Is to take further risk on a stock by doubling effort/investment in a
hope and attempt to raise the price

RNN - Recurrent Neural Network - A type of neural network that remembers weights
and parameters for learning

LSTM - Long-Short Term Memory Neural Network - A type of recurrent neural network
that overcomes limitations of standard RNNs

RMSE - Root Mean Squared Error - Regression performance metric

MSE - Mean Squared Error - Regression performance metric

MAE - Mean Absolute Error - Regression performance metric

MAPE - Mean Absolute Percentage Error - Regression performance metric

HTML - Hyper-Text Markup Language - Scripting language used for forming web
pages.

CSS - Cascading Style Sheets - A scripting language used to customise the design of
the interface of a webpage coded in HTML

JSON - JavaScript Object Notation - Open Standard file format that uses human
readable text to transmit data objects

CSV - Comma-Separated Values - Tabular file format that uses commas to separate

values

API - Application Programming Interface - A set of web endpoints, communication
protocols and tools for building software

Contents

1__Abstract]

2 Acknowledgements|

3 Glossary

[b.3 Project Motivation| o
[>.4 Technical Specification|o

6 Quality Goals|

[6.1 Process Description| 0oL
(6.2 Quality Objectives|
[6.3 Tools to Ensure Quality] o000,

713 Review]
[7.1 Existing Tools|

[7.3.2 'Tweepy Python Packagel

7.4 Sentiment Analysig o oo

[7.4.1 Natural Language Processingl

[7.4.2 Valence Aware Dictionary and skntiment Reasoning/.
(.o Neural Networksl
[7.5.1 Recurrent Neural Network (RNN)|.
[7.5.2 Long-Short Term Memory (LSTM)|

10

12
12
12
13
15

17
17
17
18

[7.5.4 Optimisers|.

[7.5.5 Regularisation|. 000
[7.5.6 Dropout|
[7.6 Machine Learning|
[7.6.1 Naive Bayes|
7.7 Bag Ot Words|

[7.9 Addictive Smoothinglo o oo

[7.10 Regression Performance Metrics|

[8 Solution Approach|

[8.1 Data gathering| 0o
[8.2 Data pre-processing| Lo
8.3 Spam Filtering|
(8.4 Language Detection|. 0.
[8.5 Sentiment Analysig oo
8.6 Neural Networkl
(8.7 Price Forecastingl o000
8.8 Frontend Application| o000
IE;.g) &&illl ls:‘g:lg:ll!:g: lg! [ll‘ll‘li!l l [lgl
[8.10 Solution Summary|
8.11 Initial Data flow Overview]

[9 System Design|
9.1 Datatlow Designs|

[9.2 Interface Design|.o

(10 Implementation|

34
34
35
35
36
36
37
39
39
39
40
41

42
42
49

10.1.4 Tive Tweet Collectionl. 55

(10.2 Data pre-processing|. o o7
(10.2.1 Tweet Filteringl 57

[10.2.2 Language detection filtering| 58

[10.2.3 Spam filter - Tokenisation, Nerams, Stopword removal and Stem- |

| TNING| . .« o o o o e e e e e e e e e e 60
(10.3 Spam Filtering| 61
(10.3.1 Naive Bayes model| 64

10.3.2 Classificationl o000 65

10.3.3 Predictl. oo 66

10.3.4 Metricslo 66

(10.4 Sentiment Analysig oo oo 67
(10.5 Recurrent Neural Network - LSTM| 68
(10.5.1 Dataset Creationl 68

[10.5.2 Training and Testing Model| 70

{10.6 Future Prediction Forecastingl 72
0.7 User Interfacel 74
(10.7.1 Key Functions|. 74
10.7.2 Final Interfacel.o o000 7

[11 Testing Metrics and Accuracy)| 79
(11.1 Integration Testing| 79
(11.2 Accuracy of Model & Results| 80
(11.2.1 Results Discussion| 80

(11.2.2 Execution Speeds| 83

D o C B [Reflection 84
2.1 DLimitationsl o 85
12.2 Reflection| 86
(13 Social, Legal and Ethical Issues| 88

(14 Conclusion and Future Improvements| 89

(14.1 Conclusionl. 89
(14.2 Future Improvements|o 90
(15 Appendices| 97
[15.1 Appendix A - Project Initiation Document| 97
[15.2 Appendix B - Log bookl., 110

4 Introduction

The premise of this project is to investigate whether the sentiment expressed in social
media has a correlation to the prices of cryptocurrencies and how this could be used
to predict future changes in the price.

The chosen cryptocurrency that will be of focus for this project will be the currency
Bitcoin (BTC), due to having the largest community and backing and has been known
to lead other fiat currencies. Bitcoin is seen as one, if not the first cryptocurrency to
bring a broader following to the peer-to-peer token transaction scene since 2009. Al-
though it was not the first token to utilise blockchain technology, it allowed investors
to openly trade a public cryptocurrency which provided pseudonymous means of trans-
ferring funds through the internet. Thus it has been around longer than most of the
other fiat currencies and is the most popular crypto-token due to it’s more extensive
community base.

Most financial commodities are subject to the whim of public confidence and are the
core of its base value. A platform that is frequently used for the public to convey their
opinions on a commodity is that of Twitter which provides arguably biased information
and opinions. Whether the opinions present a basis in facts or not, they are usually
taken at face value and can influence the public opinion of given topics. As Bitcoin has
been around since 2009 the opinions and information on the commodity are prevalent
through the platform. In the paper Sentiment Analysis of Twitter Data for Predicting
Stock Market Movements by Maghi et al. |[1] 2.5 million tweets on Microsoft were
extracted from Twitter, sentiment analysis and logistical regression performed on the
data yielded 69.01% accuracy for a 3-day period on the increase/decrease in stock
price. These results showed a "good correlation between stock market movements and
the sentiments of the public expressed in Twitter".

The background of this project is in response to the volatility of the cryptocurrency
market, which can fluctuate at a moments notice and can be seen to be social media
driven. The history of the price of Bitcoin and what was being discussed on the
currency around it’s most volatile period to-date, Nov-2017 to Feb-2018, shows a strong
bullish trend which saw Bitcoin reach a $19,500 high in mid-Dec. While social media,
such as Twitter, during that period was had an extremely positive outlook on the
cryptocurrency. The trend was short lived and saw the market crash only a month
later, with only a couple of sell-offs, expected for the holidays rush, accompanied by
negative outlooks posted on social media turned the market against itself which saw
the longest bearish market in Bitcoin’s history and is still trying to recover today.

Due to how volatile the crypto-market can be, there is a need to either mitigate or
to anticipate where the markets are heading. As the crypto-market and Bitcoin are
affected by socially constructed opinions, either through Twitter, news articles or other
forms of media, there is a way to perform the latter, where the prices of Bitcoin could
be predicted based on the sentiment gathered from social media outlets.

10

This project aims to create a tool that gathers tweets from Twitter, obtains the overall
sentiment score of the given text while gathering historical price data for the period
gathering occurs. Features are then extracted from the gathered data and used in a
neural network to ascertain whether the price of the currency can be predicted from
the correlation between the sentiment and price history of the data.

This report will discuss the justifications for the project and the problems it will be
attempting to resolve, the stakeholders that would benefit the most from this system
and what this project will not attempt to accomplish. Similar tools will be critiqued
and examined for their feature set and credibility in the literature review along with
current sentiment analysers, algorithms, natural language processing techniques and
neural networks in their respective topics and comparing their accuracy for this project
purpose. The solution approach will discuss the decisions and reasoning behind choos-
ing the techniques and tools used for this project and will outline the requirements for
this project. Implementation of the chosen techniques and tools, with the discussion
of essential functions of the system will formulate the implementation section of this
report with an in-detail explanation of the function’s use and data flow of the system.

11

5 Problem Articulation

5.1 Problem Statement

The fundamental problems this project attempts to address are that of, an open-
source system available to the public that aids in investor decision making on whether
to invest at a given point, based on the analysis and prediction of BTC for each hour.
The accuracy of open-source tools and technology when applied to the trading market
scene and to identify whether there is a correlation between Twitter sentiment and
BTC price fluctuation. While there are existing tools, only a few are available to the
public and only provide basic functionality, while others are kept in-house of major
corporations who invest in this problem domain.

The other issue presented here is that assuming perfect accuracy can be achieved is
naive. As this project will only be using existing tools and technologies; thus, there are
limitations to the accuracy of what can be obtained. One of that being the suitability
of the tools, there are no open-source sentiment analysers for stock market prediction,
thus finding a specifically trained analyser for the chosen domain in highly unlikely.
In relation, finding the most suitable machine learning or neural network is equally
important as this will determine the accuracy of the predictions. Due to being a
regression problem, machine learning techniques and neural networks that focus around
this and forecasting should be considered.

The accuracy and suitability of various machine learning methods and neural networks
are a known issue in their respective domains. This investigation should be carried out
to determine their suitability for their needed use in this project and will be detailed
in the literature review.

This project will focus on the investigation of these technologies and tools to justify
whether it is feasible to predict the price of BTC based on historical price and the
sentiment gathered from Twitter. Limitations of the system and it’s accuracy in pre-
dictions should be investigated and discussed to determine the implemented solution
is the more suitable compared to other methods.

5.2 Stakeholders

The main stakeholders of this system would be those looking to invest in the cryp-
tocurrency markets, in this projects regard, specifically into Bitcoin.

e Public Investors - These are investors from the general public. These investors
can decide to either actively or passively invest in the markets but are essential
for the general use of a given cryptocurrency. This type of investor would benefit

12

the most from an open-source system such as this, as it will aim to provide a basis
for decisions for buying or selling Bitcoin. Additionally, due to the lack of any
open-source tools available, these stakeholders could be seen as being left in the
dark when it comes to predicting the direction of Bitcoin where Businesses and
Enterprises will have a one up, due to having an internal system for predictions.

Speculators - These stakeholders can be both public and business, who aim for the
chance of the possibility fast. They actively invest at points where a market is an
impending rise in price and tend to sell after a market makes them a reasonable
amount of money before it possibly drops. These stakeholders would benefit from
such a system as it will provide a means to identify and predict short term gains
in the Bitcoin market, and if taken into decisions could make a profit.

Business Investors: These will be investors of a business who would be investing
on the behalf of a company. A system such as that this project will provide may
benefit such a stakeholder, but the information would be used as a collective
with others to justify the investment. Additionally, this system may not benefit
this stakeholder as the company they are investing for may have an equivalent
or better system.

Prospect Investors: These are new investors to the cryptomarket scene who are
looking to get into the market and are generally looking for initial information
of the market movement. This system will benefit such a stakeholder in their
initial decisions in market investment, but not as much as a generally more active
investor. This is due to the extent to which a new investor invests compared to
a establish active investor.

Developer - Andrew Sotheran: The developer responsible for this project by
developing a solution that satisfies the problem and objective defined in the
Technical Specification. As the sole developer of this project it should be ensured
that the system is developed on time and the project runs smoothly.

Project Supervisor - Kenneth Boness: Is the projects supervisor whom will over-
see the development through weekly project meetings. Weekly feedback will be
given on the progress and direction of development, and will offer advice to ensure
the quality of the solution.

5.3 Project Motivation

The motivation behind the project stems from a range of points, from personal and
public issues with the volatility if the crypto-market, and how losses specifically could
be mitigated. The personal motivations behind the conceptualisation of this began two
years ago during the crash of late 2017-2018, which saw new investors blindly jump
into the trend that was buying cryptocurrencies. During this period of November to

13

December 2017 saw Bitcoin’s price reach $20,000 from $5,000, new public investors
jumped on the chance to buy into the trend of possibly making quick profits and
the fear of missing out (FOMO). In late December, a few holiday sell-offs occurred
from business and big investors, this coupled with a few negative outlooks posted on
social media by news outlets caused the market to implode causing investors to panic
sell one after the other and posting negativity on social, thus causing more decline in
the market. As a result, this caused personal monetary loss and distress as being a
long-term investor.

Another motivation is that at the time of writing, there are no publically available
systems that combine sentiment analysis with a historical price to forecast the price
of Bitcoin or any other cryptocurrency. There are papers and a few code repositories
that implement a similar concepts [2]| - Use of a Multi-layer Perceptron network for
moving averages in Bitcoin price, |3| - Predicting Bitcoin price fluctuation with Twitter
sentiment analysis, [4] - Predict Tomorrows Bitcoin (BTC) Price with Recurrent Neural
Networks but are not operational. A system such as [1| hosted on Coingecko, a popular
cryptocurrency track site, provides a tool for basic sentiment analysis but doesn’t give
an evaluated indication of the direction of the market as a prediction. This leaves the
public to the whim of volatility of the market without a means to know what the next,
say an hour, could entail to possibly reduce losses if the market drops. Such systems are
usually kept in-house of major corporations who invest significant time into tackling
such a problem. Additionlly, this could be seen as a positive for major investors, as
such a system could cause panic selling if public investors solely trusted such a system.

14

5.4 Technical Specification

This project will need to follow a specification to ensure that the quality and the prob-
lem statement is met. This section will outline what this project should include, what
it will not consist of and will guide the development of this project.

General:

e To investigate into the use of lexicon-dictionary based sentiment analyser ap-
proach in for sentiment analysis and it’s customisability for a given topic domain

e To create a system that can predict the next hour of Bitcoin’s price when given
the price and sentiment for the past hour

e To investigate into natural language data pre-processing techniques and how these
could be used to filter out unwanted data

e To investigate into the use of a neural network, specifically an LSTM for fore-
casting price data

e Ultimatly, to investigate into how the use of sentiment effects the prediction of
price for the next hour

Natural Language pre-processing (Spam and language detection filtering)

e To produce a system that processes the historical and live tweets, removing un-
wanted characters, removing urls and punctuation.

e To produce a system for spam filter using probability likelihood for processed
tweets. A naive Bayes approach may be suitable for this given task

e To produce a language detection and filtering system that removes all tweets that
are not of the English language or containing non-basic-latin characters

e To provide a means for stemming, tokenisation and stopword removal to aid in
data pre-processing for language detection and spam filtering

Neural Network

e To produce a neural network which trains on collected, historical and live data,
to forecast the future price of Bitcoin, based on price and sentiement

15

e To produce a neural netowork which accomplished the same as the other above,
but with out use of sentiment

e To produce metrics to justify accuracy of the model

e To produce data files containing, the current time of predictions alongside current
hour price and sentiment. This should also include a suggested action based on
a threshold for the price difference between hours.

e To produce data files containing the true and predicted price values of every hour
for trained data, and another for current reoccuring predictions.

Interface

e To produce a basic interface which displays the predicted values alongside true
price values with a time interval step of an hour. This can be displayed as both
a table consisting of:

Date of prediction, predicted price of next hour, current hour price and senti-
ment, and a suggested action based on a threshold for the price difference between
hours.

To produce charts displaying the true and predicted price values for every
hour, from both start of new predictions made, and from training predictions

e To display a table of performance metrics of the trained model

Server

e This system, both prediction system and interface, should be deployed to a server
due to the need to be constantly running

This project will not attempt to justify the accuracy of the chosen algorithm or tools
over other algorithms. It will be discussed in the solution approach the justifications
made on why the chosen algorithm and tools have been used for this project over the
others, but accuracy will not be directly compared.

This project will only be coded to predict an hour ahead as the model will be trained
on an hourly basis as the data is gathered per hour. Predictions for further in the
future can be modelled but will be seen as a future improvement to the system.

The detail of a interface may be subject of change through this project due to time
contraints and the focus being the investigation of the impact social media has on
market predictions.

16

6 Quality Goals

Although this project will be an investigation it is important to ensure that a specific
level of quality is met and maintained throughout development to produce a final
solution that fully meets the requirements set out in the technical specifiction. This
section will outline the quality objectives, processes used to aid in ensuring quality,
quality goals and the deveopment pipeline.

6.1 Process Description

To maintain a level of quality through the project’s development lifecycle various pro-
cesses are to be defined. As stated in ISO 9001:2015 [5] "Consistent and predictable
results are achieved more effectively and efficiently when activities are understood and
managed as interrelated processes". To achieve this, clearly defined processes of how
this system should be developed along with tools to achieve this will need to be de-
fined before the development of this project, to ensure an effective, transparent and
well-tested system is created, of which should be outlined in the solution approach.

6.2 Quality Objectives

The objective of testing is to determine that the functionality provided works according
to the specifications and satisfies the problem statement. This is to ensure that the
system is performing both as intended and without failure.

The most important aspect of testing of the system is to ensure that predictions for
Bitcoin price are calculated for the next hour interval. Testing should be conducted
around this to both determine the accuracy of the predictions made by the system, and
to validate the optimisers and other methods used for model creation. Suitable per-
formance and accuracy metrics should be chosen and implemented to aid in justifying
the accuracy of the developed solution for a regression model.

The development of this project should follow an agile methodology as closely as and
when possible. Prior to functions and components being created after another has
finished development, said completed function should be tested and fully operational
with the existing functions and components it uses or provides for. Integration testing
should be conducted to determine what functions are operating as intended along with
the development of the system.

Lastly, the testing of the user interface shouldn’t be considered as part of the testing
of the system due to the focus of this project not formulating around the development
of the interface, but rather around the back-end prediction system. As long as what is
intended to be displayed to the user and are displayed correctly as per the user interface
design such testing will be sufficient.

17

6.3 Tools to Ensure Quality

e Version Control: A version control system will be used for the development of this
project, such as Git - (Github), and will provide a means to track the versions of
the code and to store it on a remote server as a backup.

e Linting and Static code analysis: This will allow for an on-the-fly bug detection
and code quality measures to be set for the python language. This will ensure that
code is written in the best practice for the language and all code will conform
to the same standard. The type of linting analyser that will be used will be
determined by the Text editor used for development.

o Text Editor/IDE: Visual Studio Editor will be used as the sole text editor for the
development of this project, due to having an in-built python linter.

18

7 Literature Review

7.1 Existing Tools

An aspect that this project will be attempting to address is that, at the time of writ-
ing, there are a limited amount of systems available to the public that either provide
sentiment analysis or predictions of the crypto-market. Additionally, none known that
combine both sentiment and price analysis to make said predictions on the direction
of the market.

Such tools are usually provided by exchanges which correspond the amount of positive
and negative sentiments with a suggestion to buy and sell. These tools, however, are
vague in their suggestions as they don’t provide any further analysis on when the best
time would be to conduct an action on the market, and simply display the number of
tweets per sentiment level. A well-known cryptocurrency tracking site,Coingeckol pro-
vides a basic sentiment analysis tool for their top 30 ranking cryptocurrencies tracked
on the site. This tool shows the sentiment analysis of tweets from Twitter every hour
for a given cryptocurrency. This is displayed as a simple pill on the page showing the
ratios of positive, neutral and negative tweets. See Appendix C' for visual representation

7.2 Related research

There has been an abundant amount of research conducted in this problem domain.
Many theses globally have been published in recent years on the topic of cryptocurrency
market predictions and analysis, and even more, research conducted on general stock
markets further back.

The thesis written by Fuita Stenquist and Jacob Lonno of the KTH Royal Institute of
Technology 3] investigates the use of sentiment expressed through micro-blogging such
as Twitter can have on the price fluctuations of Bitcoin. Its primary focus was creating
an analyser for the sentiment of tweets more accurately "by not only taking into account
negation, but also valence, common slang and smileys”, than that of former researchers
that "mused that accounting for negations in text may be a step in the direction of more
accurate predictions.”. This would be built upon the lexicon-based sentiment analyser
VADER to ascertain the overall sentiment scores were grouped into time-series for
each interval from 5 minutes to 4 hours, along with the interval prices for Bitcoin.
The model chosen was a naive binary classified vectors of predictions for a certain
threshold to "ultimately compare the predictions to actual historical price data”. The
results of this research suggest that a binary classification model of varying threshold
over time-shifts in time-series data was "lackluster", seeing the number of predictions
decreasing rapidly as the threshold changed. This research is a reasonable basis of
starting research upon, as it suggests tools such as VADER for sentiment analysis and

19

https://www.coingecko.com

that the use of a machine learning algorithm would be a next step in the project that
would yield better more accurate results.

Another thesis written by Pagolu, Venkata Sasank and Reddy Kamal Nayan, Panda
Ganapati and Maghi, Babita |1] on "Sentiment Analysis of Twitter Data for Predicting
Stock Market Movements" 2.5 million tweets on Microsoft were extracted from Twitter,
sentiment analysis and logistical regression performed on the data yielded 69.01% ac-
curacy for a 3-day period on the increase/decrease in stock price. These results showed
a "good correlation between stock market movements and the sentiments of the public
expressed in Twitter". Using various natural language pre-processing tweets for feature
extraction such as N-gram representation the sentiment from tweets were extrapolated.
Both Word2vec and a random forest classifier were compared for accuracy, Word2vec
being chosen over the machine learning model. Word2vec, being a group of related
shallow two-layer neural network models to produce word embeddings.

A topic that reoccurs in various papers and theses is that of the use and focus of
regression techniques and machine learning methods. Few implement a fully fledged
neural network; the above paper attempts to use a simple network to achieve predic-
tions of classification of sentiment for stock market movement then correlated this with
historical data of prices. An article posted on "Code Project" by Intel Corporation
[6] compares the accuracy of three machine learning algorithms; Random Forest, Lo-
gistic Regression and Multi-Layer Perceptron (MLP) classifiers on predicting the price
fluctuations of Bitcoin with embedded price indices. Results showing "that using the
MLP classifier (a.k.a. neural networks) showed better results than logistic regression
and random forest trained models”. This assumption can be backed up by the results
from a thesis posted on IEEE [7] which compares a Bayesian optimised recurrent neural
network and a Long Short Term Memory (LSTM) network - showing the LSTM model
achieving "the highest classification accuracy of 52% and a RMSE of 8%". With inter-
est in neural networks personally and with little papers utilising them for this purpose
a neural network will thus be implemented, and the accuracy of one’s predictions with
use of sentiment analysis data analysed and discussed.

7.3 Data Collection
7.3.1 Twitter and Twitter API

Twitter is a micro-blogging platform that was launched in 2006 and provides it’s users
the ability to publish short messages of 140 characters. The messages published could
be of any form, from news snippets, advertisement, or the prevalent publication of
opinions which allowed a platform of extensive diversity and knowledge wealth. As of
the time of writing, the message character limit was increased to 280 characters, the
platform has over 300 million monthly active users, and around 1 million tweets are
published per day. Due to the length restriction and the primary use of the platform

20

to express opinions Twitter is seen as a gold mine for opinion mining.

The Twitter API has an extensive range of endpoints that provide access from stream-
ing tweets for a given hashtag, obtaining historical tweets for a given time-period and
hashtag, posting tweets on a users account and to change settings on a user account
with authentication. The exhaustive range of features provided by these endpoints
makes data collection from Twitter straight forward as one can target a specific end-
point for the required data. Due to Twitter being the target for opinion mining within
this project the Twitter API will ultimately need to be utilised. This can either be
used for the gathering of historical tweets or streaming current tweets for the # Bitcoin
hashtag.

There are, however, limitations and rate limits imposed on users of the API. Twitter
employs a tiering system for the API - Standard, Premium and Enterprise tiers, each
of which provides different amounts of access for data collection. If the API were to be
used to capture historical data for a span of 3 months, each tier is allowed to obtain
varying amounts of data for different durations; [8]

e A Standard user would be able to capture 100 recent tweets for the past 7 days

e A Premium user would be allowed to capture up to 500 tweets per request for
a 30-day span and will have access to a full-archive search to query up to 100
tweets per request for a given time period, with a 50 request limit per month

e An Enterprise user would be able to capture up to 500 tweets per unlimited
requests for a 30-day span and will be able to query the full-archive of tweets for
a given hashtag up to 2000 tweets per unlimited amount of requests for a given
time period

Each tier has individual costs while the standard user negating this as a basic tier. Due
to only being elegable for the Premium tier for educational purposes, historical data
gathering will be limited to 100 tweets per request with a limitation of 50 requests per
month. Furthermore streaming tweets is an Enterprise feature which rules out the the
Twitter API for use of streaming current real-time data [9)].

7.3.2 Tweepy Python Package

Tweepy is a python package for accessing the Twitter API. It fundamentally accom-
plishes the same means if one to conduct a GET request to the Twitter API, except
it simplifies this into a simple to use API that is easier to implement and automate in
python [10]. Consequently, it builds upon the existing Twitter API to provide features
such as automated streaming of provided hashtags to the API. It realises this by initial-
ising a listener instance for a provided set of API credentials, handling authentication,
connections, creating and destroying sessions. Due to Twitter’s streaming API being

21

only available to Enterprise users [§], using Tweepy to stream data for a given hashtag
will provide the real-time data needed. The streaming of current data by Tweepy is
accomplished by setting up a stream which listens for new data for a given hashtag,
which bypasses the need for the Enterprise tweet tracker provided by the Twitter API.

7.4 Sentiment Analysis

In short, sentiment analysis is the process and discovery of computationally identi-
fying and categorising the underlining opinions and subjectivity expressed in written
language. This process determines the writer’s attitude towards a particular topic
as either being positive, neutral or negative in terms of opinion, known as polarity
classification.

7.4.1 Natural Language Processing

Polarity classification is the focus of sentiment analysis and is a well-known problem
in natural language processing that has had significant attention by researchers in
recent years [1|[3][7]|11]. Traditional approaches to this have usually been classified
to dictionary-based approaches that use pre-constructed sentiment lexicons such as
VADER or usually confined to machine learning approaches. The latter requires an
extensive amount of natural language pre-processing to extrapolate vectors and features
from the given text; this is then fed into a machine learning classifier which attempts
to categorise words to a level of sentiment polarity. Natural language pre-processing
techniques, supported by the NLTK (Natural Language Toolkit) python package that
would be required for this approach would consist of;

e Tokenisation: The act of splitting a stream of text into smaller units of typo-
graphical tokens which isolate unneeded punctuation.

e Removal of domain specific expressions that are not part of general purpose
English tokenisers - a particular problem with the nature of the language used in
tweets, with @-mentions and #-hashtags

e Stopword removal: Are commonly used words (such as "the","in","a") that pro-

vide no meaning to the sentiment of a given text

e Stemming: Is used to replace words with common suffixes and prefixes, as in "go"
and "goes" fundamentally convey the same meaning. A stemmer will replace such
words with their reduced counterparts

e Term Probability Identification and Feature Extraction: This is a process that
involves identifying the most frequently used words in a given text, by using a
probability type approach on a pre-defined dataset which classifies a range of

22

texts as with overall negative or positive a machine learning algorithm is trained
to classify these accordingly.

e Ngrams: Are a contiguous sequence of n items from a given sample of text.
The use of Ngrams in natural language processing can improve the accuracy of
classification. For example: ’Good’ and 'Not Good’ have opposite meanings.
By only using 1 token (lgram) 'not good’ ('not’ and 'good’) can be incorrectly
classified. As the english language contains a significant amount of 2gram type
word chains using 2gram can improve the accuracy of classification.

The former, seen and has been proven to provide higher accuracy than traditional
machine learning approaches [12], and need little pre-processing conducted on the data
as words have a pre-defined sentiment classification in a provided lexicon. Although
these lexicons can be complex to create, they generally require little resources to use
and alter.

7.4.2 Valence Aware Dictionary and sEntiment Reasoning

VADER is a combined lexicon and rule-based sentiment analysis tool that is specifically
attuned to sentiments expressed in social media and works well on texts from other
domains. It is capable of detecting the polarity of a given text - positivity, neutrality,
and negativity [13], and also calculate the compound score which is calculated by
summing the valence scores of each word in the lexicon. VADER uses a human-centric
approach to sentiment analysis, combining qualitative analysis and empirical validation
by using human raters to rate the level of sentiment for words in its lexicon. Vader also
has emoticon support which maps these colloquialisms have pre-defined intensities in
its lexicon, which makes VADER specifically suitable for the social media domain were
the use of emoticons, utf-8 emojis and slang such as "Lol" and "Yolo" are prevalent
within the text. Additionally, VADER is provided as a lexicon and a python library
under the MIT license, this means that it is open-source software. This means that the
lexicon can be altered and added to abling it to be tailored to specific topic domains.

VADER was constructed by examining and extracting features from three pre-existing
well-established and human-validated sentiment lexicons |13]| - (LIWC) Linguistic In-
quiry and Word Count, (ANEW) Affective Norms for English Words, and (GI) General
Inquirer. This is supplemented with additional lexicon features "commonly used to ex-
press sentiment in social media text (emoticons, acronyms and slang)” |13| and uses
"wisdom-of-the-crowd" approach [14] to establish a point of estimations of sentiment
valance for each lexical feature candidate. This was evaluated for the impact of gram-
matical and syntactical rules and 7,500+ lexical features, with mean valence "< > zero,
and SD <= 2.5" as a human-validated "gold-standard" sentiment lexicon. [13|Section
3.1

23

VADER is seen as a "Gold Standard" for sentiment analysis, in the paper for VADER,
[13] A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,
it was compared against 11 other "highly regarded sentiment analysis tools/techniques
on a corpus of over 4.2K tweets” for polarity classification across 4 domains. Re-
sults showing VADER, across Social media text, Amazon reviews, movie reviews and
Newspaper editorials, consistently outperforming other sentiment analysis tools and
techniques showing a particular trend in performing significantly higher on analysis of
sentiment in tweets. |13| Section 4: Results

7.5 Neural Networks

A neural network is a set of perceptrons modelled loosely after the human brain that
is designed to recognise patterns in whatever domain it is intended to be trained using.
A neural network can consist of multiple machine perceptrons or clustering layers in a
large mesh network, and the patterns they recognise are numerical which are contained
in vectors. Pre-processed data, confined and processed into pre-defined vector labels,
are used to teach a neural network for a given task. While this differs from how
an algorithm is coded to a particular task, neural networks cannot be programmed
directly for the task. The requirement is for them to learn from the information by use
of different learning strategies; |15]|16]

Inputs Weights

X1

Activation
Function

X2
output
o ———

X3

Xn

Figure 1: Basic perceptron layout

e Supervised learning: Simplest of the learning forms, where a dataset have been
labeled which indicate the correct classified data. The input data is learned upon
until the desired result of the label is reached |17]

e Unsupervised learning: Is training the with a dataset without labels to learn
from. The neural network analyses the dataset with a cost function which tells
the neural network how far off target a prediction was. The neural network then
adjusts input weights in attempt to increase accuracy. [16]

24

e Reinforced learning: The neural network is reinforced with positive results and
punished for negative results causing a network to learn over iterations.

7.5.1 Recurrent Neural Network (RNN)

The type of neural network that is of focus for this project will be that of a Long-Short
Term Memory (LSTM); however, it is crucial to understand how this is an extension
of a Recurrent Neural Network (RNN) and how the underlying network works.

Recurrent Neural Networks (RNN) are a robust and powerful type of neural network
and is considered to be among the most encouraging algorithms for the use of classi-
fication, due to the fact of having internal memory. RNNs are designed to recognise
patterns in sequences of presented data or most suitably, time-series data, genomes,
handwriting and stock market data. Although RNNs were conceptualised and invented
back in the 1980s [18], they’ve only really shown their potential in recent years, with
the increase of computational power due to the level of sequencing and internal mem-
ory store to retrain. Due to this 'internal’ memory loop, RNNs are able to remember
data and adjust neurons based on failures and alternating parameters. The way this is
accomplished, knowing how a standard neural network such as a feed-forward network,
should initially be understood. [19]

A standard, feed-forward neural network has a single data flow with an input layer,
through hidden computational layers, to an output layer. Therefore any node in the
network will never see the same data again. However, in an RNN data is cycled through
a loop over the same node, thus two inputs into the perception. Decisions are influenced
by previous data that it has previously learned from if any, which in turn affects output
and the weights of the network. [20]

Perceptron Perceptron

Output Layer Output Layer

Input Layer Input Layer

Figure 2: Feed-forward network (left) vs Recurrent Neural network (right)

The act of tweaking weights to alter the processing of the next iteration of data in an
RNN is called backpropagation, which in short means going back through the network

25

to find the partial derivatives of the error with respect to the weights after output has
occurred. Along with gradient descent, an algorithm that adjusts the weights up or
down depending on which would reduce the error. There are however a few obstacles
of RNNs;

e Exploding Gradients: Is when gradient decsent assigns high importance to the
weights. As in the algorithm assigns a ridiculously high or low value for the
weights on iteration which can cause overlow and result in NaN values

e Vanishing Gradients: Is when the values of a gradient are small enough that
weights cannot be altered and the model stops learning.

These issues are overcome by the concept of Long-Short Term Memory neural networks,
coined by Sepp Hochreiter and Juergen Schmidhuber, 1997 .

7.5.2 Long-Short Term Memory (LSTM)

LSTMs are an extension of recurrent neural networks capable of learning long-term
dependancies and were conceptualised by Sepp Hochreiter and Juergen Schmidhuber,
1997 . LSTMs were explicity designed to avoid long-term dependancy problems
such as exploding and vanishing gradients. As they are an extension of RNNs they
operating in almost the exact same manner, but stores the actual gradients and weights
in memory which allows for LSTMs to read, write and alter the values. A way of
explaining how this works is seeing the memory block as a gated cell, where 'gated’ is
that the cell decides whether or not to store or alter data in it’s memory based input
data and the importance assigned to it. In a sense it learns over time of which values
and data is important.

K —(D

e Tfstis 156 Ll o
o

Inputs: outputs: Nonlinearities: Vector operations:
Input vector Memory from (sigmoid (%) Element-wise
current block \ G / o multiplication
/7 7\ Memory from Output of Hyperbolic | + | Elementwise
(9%) previousblock) curren 't block tangent Summation /
47\ outputof

/) previous block ias: @)

Figure 3: A conceptual design of an LSTM cell bank - from Medium article by Shi
Yan: Understanding LSTM and its diagmms

26

The network takes in three initial inputs, the input of the current time step, output
from the previous LSTM unit if any, and the memory of the previous unit. Outputs,
H; - output of current network, and C; - the memory of the current unit. [24]

The various steps of the network decide what information is thrown away from the cell
state, through use of a ’forget gate’ which is influenced by the calculations of sigmoid
memory gates which influence how much of old and new memory is used C;_1, H; 1
and X;, and merged based upon importance. The section of the cell that controls
the outflow memory H; and C; determines how much of the new memory should be
used by the next LSTM unit. For a more in-detailed explanation of exactly how the
calculations are made see |23|,[24] and [25].

As mentioned in the foremost section of related work the use of an LSTM network
would be optimal for the given problem domain over the use of machine learning
algorithms, for time-series data. As detailed above, LSTMs are widely used for time-
series data forecasting due to being able to remember previous data and weights over
long sequence spans|23|[26]. The flexibility of LSTMs such as many-to-many models,
useful "to predict multiple future time steps at once given all the previous inputs” due
to use of look-back windows and control of multiple 3D input parameters.|26]

7.5.3 Keras and TensorFlow

TensorFlow is an open-source numerical math computational library framework for
dataflow differentiable programming, primarily used for machine and deep learning ap-
plications such as neural networks. TensorFlow bundles various machine learning and
deep learning models and algorithms into one package for the Python language, but
executes as byte code executed in C+-+ for performance. TensorFlow provides a range
of conveniences to developers for the types of algorithms it supports such as debug-
ging models and modifying graph operations separately instead of constructing and
evaluating all at once, and compatibility to execute on CPUs or GPUs |27]. However,
TensorFlow’s implementation and API, although provides an abstraction for develop-
ment for machine and deep learning algorithms and simplifies implementation, it isn’t
all too friendly to programmers to use, especially new developers to the field of machine
and deep learning.

Keras is a high-level built to run atop of deep learning libraries such as Tensorflow and
Theanos - another deep learning library similar to Tensorflow. It is designed to further
simplify the use and application of such deep learning libraries thus making implement-
ing a neural network and similar supported algorithms friendlier to developers working
in Python. It accomplishes this by being a modular API; neural layers, cost functions,
optimisers, activation functions, and regularisation schemes are all standalone features
of the API that can be combined to create functional or sequential models. Due to be-
ing a high-level API for a more refined and more natural development of deep learning

27

libraries, it does not provide these low-level operations and algorithms; Keras relies on
a back-end engine such as TensorFlow and supports a wide range of others.

7.5.4 Optimisers

There are three distinct optimisers used for LSTM networks; ADAgrad optimizer,
RMSprop, Adam. The role of an optimiser All three of which is a type of Stochastic
Gradient Descent, which 0 (weights of LSTM) is changed according to the gradient of
the loss with respect to #. Where « is the learning rate and L is the gradient loss. |2§]

9t+1 = 9,5 - O{(SL(Qt)

This is primarily used in recurrent LSTM neural networks to adjust weights up or
down depending on which would reduce the error, see RNN section for non LSTM
limitations. The concept of using momentum p in stochastic gradient decent helps
to negate significant convergance and divergance during calculation of the weights
and dampens the oscillation, by increasing the speed of the learning rate upon each
iteration. [29)

Orp1 = 01 + Viq
where

Vpp1 = pvy — adL(6;)
[29]

e Adagrad (Adaptive Gradient): Is a method for adaptive rate learning through
adaptively changing the learning parameters. This involves performing more
substantial updates for infrequent parameters and smaller updates for frequent
parameters. This algorithm fundamentally eliminates the need to tune the learn-
ing rate of the neural network manually and is well suited with sparse data in a
large scale network. [29]

n
Ot = 0; + Vpy g —ee -
t+1 t t+1 G, te gt

(Gy is the sum of the squares of the past gradients to 6)
e RMSProp (Root Mean Square Propagation): Aims to resolve Adagrad’s radi-

cally diminishing learning rates by using a moving average of the squared gra-
dient. Thus utilises the magnitude of the recent gradient descent to normalise

28

it, and gets adjusted automatically by choosing different learning rate for each
parameter. [30]

n
"Gt
\/(1 —V)gi + Vg + €

‘9t+1 = 9t -

(v - decay that takes value from 0-1. g; - moving average of squared gradients)

31]

e Adam (Adaptive Moment Estimation): Also aims to resolve Adagrad’s diminish-
ing learning rates, by calculates the adaptive learning rate for each parameter.
Being one of the most popular gradient descent optimisation algorithms, it esti-
mates from the 1st and 2nd moments of gradients. Adam implements the expo-
nential moving average of the gradients to scale the learning rate of the network
and keeps an average of past gradients. [32]

my = Py + (1 — B1)g:
vy = Povy—1 + (1 — 52)9152

The algorithm updates the moving averages of the gradient (m;) and the squared
gradient (v;) which are the estimates of the 1st and 2nd moments respectively.
The hyperparameters ; and f5 control the decay rates of the moving averages.
These are initialised as 0 as a biased estimations for the initial timesteps, but an
become bias-corrected by counteracting them with;

- my
my =
1—pt
and
- (%
Ve =
1—p4

Thus the final formula for the Adam optimiser is;

nmy

\/’l_ft—FE

Diederik P. Kingma, Jimmy Lei Ba - Adam: A method for Stochastic
Optimization|32]

Ori1 = 0 —

29

7.5.5 Regularisation

To avoid issues such as overfitting of the model of a neural network, techniques such
as regularisation to produce better predictive performance and to improve variance of
the model created. [33] Regularisation is a technique that involves modifying the error
function of the network, calculated as the sum of squares errors for individual training
and validation samples. This adds a term to the error function which decreases the
weights and biases of the network to smooth out outputs of each layer and LSTM cell,
thus making the network less likely to overfit.

7.5.6 Dropout

Dropout is a method of reducing under and overfitting of a network, by ignoring neurons
during the training phase of model creation where a particular set of neurons are chosen
at random to be ignored. Due to connected layers in a neural network, especially in
an LSTM network, occupy the majority of the parameters neurons can develop a co-
dependency on and from each other during the training phase of the network which
reduces the individual efficiency of each neuron and can lead to the overfitting of
training data. [34][35]

7.6 Machine Learning
7.6.1 Naive Bayes

To get an understanding of both how probability works and how a neural network
will predict the next hour value based on the concepts of probability, using a well-
established probability algorithm will aid in this understanding.

Bayes theorem works on conditional probability and is the probability of how often
an event will happen given that that event has already occurred. There are numerous
variations of the theorem such as Multinomial, which supports categorical features
where each conforms to a multinomial distribution, and Gaussian naive Bayes, which
support continuous-valued features each of which conforming to a Gaussian (normal)
distribution. The classical multinomial Bayes theorem is defined as; 36|

P(AN H) « P(H)
P(A)

PHNA) =

and incase H and A are independant

P(HNA) = P(H) => P(H N A) = P(H)P(A)

30

where:

P(H) is the probability of hypothesis being true
e P(A) is the probability of evidence
P(

AN H) is the probability of the evidence such that the hypothesis is true

e P(H N A) is the probability of the hypothesis given the occurance of evidence of
the probability

The naive approach assumes the features that are used in the model are independent
of one another, such that, changing the value of a feature doesn’t directly influence the
value of the other features used in the model. When such features are independent,
the Bayes algorithm can be expanded:

AN H) * P(H)
P(A)

P A) = 2

Becomes

P(AiNnH)*«P(AyNH)..«x P(A,NH)*P(H)
P(A;) x P(Ay)...x P(A,)

Probability of Likelihood of evidence x Prior
Probability of FEvidence

Probability of Outcome N Evidence =

The naive Bayes approach has many applications, especially for the topic of this project
in classifying the probability occurrence of the next price. Although it is a robust
algorithm has its drawbacks which make it not as suitable as a neural network for the
given need of this project. The naive Bayes trap is an issue that may occur due to the
size of the dataset that will be used. There are however other scenarios this algorithm
could be used such as classification of spam data.|36]

7.7 Bag Of Words

The Bag Of Words algorithm counts the occurance ("Term-Frequency’) of a word in a
given text or document. The counts allow the comparison for text classification and is
used prior to TF-IDF (detailed below) to aid in identifying the probability of words in
a given text and classify accordingly. [37]

Total number of occurrences of w in dataset

P d P =
(w) and P(w|spam) Total number of words in dataset

31

7.8 TF-IDF

Stands for Term Frequency-Inverse Document Frequency is another way similar to Bag
of Words that are used to judge the topic of a given text. Each word is given a weight
(relevance not frequency) for how many times it occurs in the given text [37]. Term-
frequency measures the number of times that a word appears in the text, but due to
words such as ’and’, 'the” and ’a’ can frequently appear in text Inverse Document Fre-
quency is used to change the weight of words that appear the most. Therefore words
that appear the most are signalled to be less important and valuable, and therefore
will not be used for classifications when used with such models as Naive Bayes for a
given purpose. [37]

IDF is defined as:

IDF(w) = log Total number of messages

Total number of messages containing w

TF-IDF is thus defined as both:

TF(w)* IDF(w)

Pw) = TF(z) * IDF(z)

Za words = € train dataset

TF(w)* IDF(w)
TF(x|spam) « IDF(x)

P(w|spam) =

Za words x € train dataset

138

7.9 Addictive Smoothing

Used alongside Bag Of Words, is a method of handling data that is in the test data
but not in the training dataset. In case of P(w) it would evaluate to 0, which will
make the P(w|spam) undefined as it will not be able to classify the word. Addictive
smoothing tackles this by adding a number « to the numerator, and adding alpha time
the number of classes over the probability that is found in the denominator. [38|

For TF-IDF:

TF(w)* IDF(w) + «
Za words x € train dataset TF(I"Sme) * IDF(:IZ‘) +ta Za words x € train dataset

P(w|spam) =

32

7.10 Regression Performance Metrics

Due to the problem statement and concept behind this project is that of a regression
method, forecasting and predicting a future value, performance and accuracy of such
a model will ultimatly need to be identified.

e RMSE - Root Mean Squared Error: Represents the sample standard deviation
of difference between predicted values and observed values, known as residuals.
It identifies how concentrated the data is around the line of best fit, lower the
better. [39]

e MSE - Mean Squared Error: Is the average squared difference between the es-
timated values. "MSFE is a risk function, corresponding to the expected value of
the squared error loss." [40].

e MAE - Mean Absolute Error: Is the average of the absolute difference between
the predicted values and observed values, and is a linear score. This means that
the idividual differences are weighted equally in the average. [39|

e MAPE - Mean Absolute Percentage Error: Is a measure of how accuracte a
forecast system is, it measures the accuracy as a percentage error for each time
period minus the actual valuse divided by the actual values. [41]

33

8 Solution Approach

This section will outline the solution intended to solve the problem that the problem
statement identifies, with justification and reference to the research conducted in the
literature review. This will lay out the development process for the project and will
tools and technologies will be explained for the particular use case in this project.

8.1 Data gathering

This will be the part of the system that will gather price data and tweets from relevant
sources, Twitter and cryptocurrency exchanges.

Price data

Historical price data can be collected in a number methods, one being that of the
exchange APIs, another through a historical price tracker who creates a CSV consist-
ing of all prior historical data. Both have their merits and reliability for granting the
needed data; however, a historical tracker who has been tracking the price every hour
since the start of Bitcoin would be the better option. This is due to a couple of factors,
the data in some historical trackers are an average unbiased price for Bitcoin - they
track the price of all or a select few exchanges and average the hourly price. Whereas
if the historical data was obtained directly from an exchange this would be biased and
might not represent the true price of the currency, and thus would need averaging with
other hourly prices from other exchanges. By using a historical tracker, all the data
is unbiased and averaged and readily available and doesn’t require any requests to an
API or coding needed to process data.

Live price data can be collected through the same methods, a historical price tracker
and an exchange API. However, this doesn’t work the same way; unfortunately, a
historical price tracker is not updated as frequently as exchange APIs thus wouldn’t
provide on the hour accurate data. Therefore exchange APIs will be utilised in this
case and multiple to give an unbiased average for the hourly price. Three exchanges
will provide a sufficient average, and the exchanges most likely to be used would be
the more popular exchanges such as Coinbase, Bitfinex and Gemini.

Tweets

Historical tweets can be obtained through the Twitter API, and however is not a
feature of the Tweepy package - not mentioned or method on official Tweepy Docu-
mentation [42]. The Twitter API, as explained in the Literature review, allows for
historical tweets to be extracted from the platform, 100 per request and a maximum

34

of 50 requests per month. This proposes an issue with not providing enough data,
where the sentiment will need to be calculated per hour. Simply put, for a year of
hourly price data, there will be 9050 records. Therefore the equivalent will be required
for sentiment; however, the sentiment will be the average the sentiment per hour of
tweets. Using a single request with 100 tweets per hour, per hour; 905,000 tweets will
need to be extracted to provide the data required. A solution to this issue could be to
use and create multiple accounts and manually extract data from the API and merge.
Another option is the pay for the data from 3rd party companies who have access to
the Enterprise API and can pull more data, 2000 per request [8][9]. Due to the price
for data of these 3rd parties the former could be a suitable, but more time-consuming
option.

Live tweets can be collected by two methods from Twitter, from the Twitter API
and using Twitter Python package such as Tweepy, detailed in the Literature review.
Additionally, the limitations of the Twitter API are also discussed in the literature
review which states how the Twitter API has a tiering system: Standard, Premium and
Enterprise. Each tier has different levels of access to the API and can extract varying
amounts of data from the platform. Thus concluding the section in the Literature
review, the Twitter API will not be used for the extraction and streaming of live tweets
due to it being restricted to Enterprise users. Therefore, Tweepy will be used to set up
a looping authenticated streaming solution with the Twitter API which will allow the
access of current recurring data. Natural language pre-processing will be apart of most
systems in this project. Techniques such as tokenisation, stemming, stopword removal
and character filtering will be prevalent, as these will be used to remove unwanted data
and to sanitise the data for classification.

8.2 Data pre-processing

Natural language pre-processing will be apart of most systems in this project. Tech-
niques such as tokenisation, stemming, stopword removal and character filtering will
be prevalent, as these will be used to remove unwanted data and to sanitise the data
for classification.

8.3 Spam Filtering

This part of the system will aim to detect whether or not the streamed data or the
historical data is spam - unwanted tweets that serve no purpose in determining the
opinion of the public. These types of tweets can be from advertisement - usually labelled
with #Airdrop and can contain "tickets here” and "Token Sale”, to job advertisements
- usually containing word such as Firm, hire, hiring, jobs and careers. It is essential
to filter out and remove such data from the network as these can be seen as outliers of
the true data and will skew predictions will invalid sentiment.

35

The spam filter will use a probability-based algorithm such as Naive Bayes, other
algorithms such as Random Forest could be used, but due to this being a probability
related problem using an algorithm such as Naive Bayes would be more suitable. This
classifier will be trained on a hand created dataset containing both spam and ham
(wanted data) tweets, and should not be exclusive to either category.

8.4 Language Detection

Before performing any natural language pre-processing and spam filtering, non-English
tweets will need to be reduced. This can be introduced through various language de-
tection filtering using techniques such as ngrams alongside other natural language pre-
processing techniques to filter out non-English characters. Fortunately, both Tweepy
and the Twitter API have methods for specifying the desired language to receive tweets
in - filter=["en’] for the Tweepy streaming method and query={...,language="en’,...}
on the JSON parameters for the Twitter API. This provides a simple means of filtering
out non-English tweets, but this only filters based on region and user settings which
indicate the users desired language. Thus if a user has their region set to ’en’ or has
their desired language set also as ’en’ the tweet will be classified as English but may
contain non-English characters.

As is the case, a suitable language detection system will be implemented to identify
any tweets that contain non-English characters. Some tweet will regrettably make it
past the initial API filters; thus such a system will be implemented that will drop the
tweets if it predominately contains non-English characters. If however, the majority
of the text in English but includes some non-English characters, these will be removed
from the tweet.

8.5 Sentiment Analysis

As mentioned in the Litrature review, the VADER sentiment analysis performs excep-
tionally well on the social media domain when compared to idividual human rates and
10 other highly regarded sentiment analysers, stated in the results section of the paper
VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media
Text |13].

Extraction of results from paper [13]:

36

Analyser Overall Precision | Overall Recall | Overall F1 Score
Ind. Humans 0.95 0.75 0.84
VADER 0.99 0.94 0.96
Hu-Liu04 0.94 0.66 0.77
SCN 0.81 0.75 0.75
GI 0.84 0.58 0.69
SWN 0.75 0.62 0.67
LIWC 0.94 0.48 0.63
ANEW 0.83 0.48 0.60
WSD 0.70 0.49 0.56

Analysis of Social Media Text (4,200 Tweets)|13]

Due to the suitability for the given domain of social media and with the customisability,
due to VADER’s lexicon-dictionary based approach, makes this sentiment analyser
most suitable for use in this project. This analyser will be utilised as the sentiment
analyser of this project due to its feature set and need for little data pre-processing
before polarity classification of the provided text. [12| "is a widely used approach to
sentiment analysis in the marketing research community, as it does not require any
pre-processing or training of the classifier.”.

This will be an intermediate system between the neural network and the data collection
pre-processing system, as the later will provide the cleaned processed data for analysis
and the former to feed in the classified polarity of each tweet alongside price data for
model learning.

8.6 Neural Network

The Neural Network section in the literature review details how Recurrent Neural
networks work alongside how a Long-short term memory networks build upon and
overcome limitations and known issues with a standard RNN network. A recurrent
neural network is the focus of this project, and this is due to:

e Nature of an RNN - Allows for backpropagation to find partial derivatives of
the error with respect to the weights after an output has occurred, to tweak the
current weights of the LSTM cell. In short, allows the tweaking of weights of the
network based on previously seen data by looping the same node thus influencing
decisions made on current data based on old weights and errors from previous.

e Nature of an LSTM over RNN - LSTMs are extensions of RNNs [23]| that were
designed to avoid long-term dependency problems such as exploding and vanish-
ing gradients. Weights are not only just reused but are stored in memory and
are propagated through the network.

37

e Lack of use for the project’s purpose - Other papers tend to focus on machine
learning techniques, other neural networks such as Multi-layer Perceptron (MPL)
and standard Recurrent Neural Networks, with use of time-series data. Especially
with the use of a standard RNN, not overcoming its common issues with gradient
descent. Stated in related research section of the literature review, [6] - "using
the MLP classifier (a.k.a neural networks) showed better results than logistical
regression and random forest trained models”

e Prior use for time-series data and data forecasting - Although RNN LSTM net-
works have been used for the prediction of Bitcoin price there are a few papers
on this [26]. Regardless, LSTMs have been notably used with use for time-series
data forecasting due to being able to remember previous data and weights over
long sequence spans [26] - "adds a great benefit in time series forecasting, where
classical linear methods can be difficult to adapt to multivariate or multiple input
forecasting problems”.

Therefore, a recurrent long-short-term memory neural network will be used for this
project to predict the next hour interval of Bitcoin price based on previous historical
prices and hourly sentiment. This system will read in historical data, both price and
sentiment - depending on the network for prediction with and without sentiment, this
data will be merged, split and used to trained and test the network model for use for
forecasting prices. The relative sizes for the training and test data can be decided
upon system creation, but the standard sizing for training neural networks is 75:25
respectively.

Tensorflow will be used for the network implementation, and the Keras API use upon it
to make development more straight forward. Other tools are comparable to TensorFlow
that are also supported by Keras.

Framework Pros Cons
Supports reinforcement learning and other algorithms DoesnaAZt support matrix operations
Offers computational graph abstraction Doesn’t have pertained models
TensorFlow Faster compile time than Theano Drnfps to Python to load each new training batch
Data and model parallelism Doesn’t support dynamic typing on large scale projects
Can be deployed over multiple CPUs and GPUs
Computational Graph Abstraction Is low-level
Has multiple high-level wrappers similar to Keras Can only be deployed to a single GPU

Theano Much slower compile times on large models than competition
Unhelpful and vague error messages
Development ceased in 2017

Graph definition is more imperative and dynamic than other frameworks Not as widley adopted as TensorFlow
Pytorch Graph computation defined at runtime, allowing standard popular IDEs to support it Visualisation is not as robust as TensorBoard
Natively support common python deployment frameworks such as Flask Not as deployable as TensorFlow, doesn’t supper gRPC

Comparison between TensorFlow, Theano and Pytorch|43|

Due to the continued support and development of TensorFlow, the board community
and support of a high-level wrapper - Keras, this library will be used for this project.
Although, Pytorch is a good alternative it is not as easy to use as implement when
compared to TensorFlow using Keras.

38

The Adam optimiser will be used for the neural network. This is due to that it ac-
complishes what both RMSProp and Adagrad set out for solving issues with gradient
descent, but builds upon these by also using the average of the second moments of the
gradients (uncentred variance).

8.7 Price Forecasting

This part of the system will be responsible for prediction the next time-step of Bitcoin’s
price for the next hour based on past data. It will use the trained model from the
neural network to predict the future hour price when given live hourly data, price
and sentiment. The system will also have a look back of 5 which will allow it to see
historical data to aid in the predictions. This will occur on the hour every hour when
new data is received and processed, this data will also be merged and the split into
training and testing data. The sizing can be decided upon system creation, but the
standard sizing for training is 75:25, training and testing respectively.

8.8 Frontend Application

The frontend application will display the predicted data to the stakeholders and users
of the system, along with charting True hourly prices against Predicted, for both with
and without sentiment embedded in the predictions. The interface will display this data
in both tabular and chart form to provide variety to the user. Performance metrics
will also be displayed at the bottom of the application to show the accuracy of the
model. Due to this project focusing around the backend, how the predictions are made
and the accuracy of the model, the interface will be somewhat of a second thought. It
will aim to display the information in a clear and concise manner which will start to
solve the problem of providing a system to the public to aid in investment decisions.
The design will not be complicated but more basic and functional. Therefore a basic
webpage coded in HTML with JQuery to plot data, and AJAX requests to obtain and
load data, will be sufficient.

8.9 With reference to Initial PID

Both the problem and solution have changed considerably from the original project
initiation document (PID), which outlines the initial ideas, objectives and specification
for the project. The reason for this was due to a change in direction which was caused
by a number of factors; one being a change in passion after initial research into machine
learning techniques and neural networks, instead of creating an application that just
performed sentiment analysis the direction turned towards how this could be used to
predict future prices. This change does still loosely keeps in-line with the initial idea

39

of wanting to create a platform that will aid in investor decision making but takes it a
step further by directly giving them predictions on market direction price as a basis for
these decisions rather than just identifying opinion direction of the market. Another
point was the simplicity of the initial idea, which consisted of focusing more work on
the design of the frontend application to display opinion data and general price data
on a range of cryptocurrencies which will only by consuming exchange APIs. Both the
developer and project supervisor concluded that this initial idea was too simple and
a more sophisticated approach needed forming. The initial PID did, however, give an
initial basis to base ideas and initial research from and was the beginning drive of this
project.

8.10 Solution Summary

The overall solution, concerning the problem statement, is to create a system mainly
consisting of; a frontend application that will display plotted; predicted and true, per-
formance metric data to the user as a clear and concise form. The backend system
behind the price forecasting will consist of various subsystem responsible for data col-
lection, filtering, data pre-processing, sentiment analysis, network training, validation
and training and future price predictions. Each stage will consist of relevant tools and
techniques for performing their required task.

40

8.11 Imnitial Data flow Overview

To get an understanding of how the system will be put together, a dataflow diagram is
a useful method for view how systems are integrated and how data could possibly flow
through a system. Figure 4 shows the initial idea of how the system will be constructed
and how data will flow and possibly processed at each stage of the system, and will be
expanded and built upon in the system design section.

Frontend Application

Neural Network il HTML page
Historical Price data Price Callect @) Preprocess Data =
[B fee Lolecar and create True/Predict 0
Datasets Data chart plot
Average Price O Saveto (SV O } i %4 S 55 Syin
Exchange APCO DL K } Model NE\’{’W 2 [’ £ :
Historical Prices CV |~) \ 1 el
/ FD. HTMLtable -0
5 / s &) Predict = Network Data displaying Hourly
.. L >
e, i Predictions
Toitter APl O Stream Data O bt O . I)
U R S Hitorcl enent | | 1)
Preprocessing e i | {
. Prediction Model {
f - Future Pregictions A
Spam Fitter } D Natural Language Processing D W i
r— } Live Prices CSV W = |::> Hourly Predictions
atast redi
T =y © } OessfyTet O | | —— | > Preprocess Datac) 3
SoamDateset | | 2 Spam o Sentiment Analysis - O and create L
pam Betes) } not Vader Datasets (copy) Test Data (X)
l / it I F
i L 7
v N -
Predctit O {
Spam =% it I Live Sentiment CSV

DropTweet 1D

Figure 4: Basic Dataflow diagram of systems in the project and how data could
possibly flow

41

9 System Design

9.1 Dataflow Designs

This section will describe and outline how the system will be formed and will work with
each component; a useful way of displaying this is as a dataflow diagram. A dataflow
is a way of representing the flow of data through a process or system; as a result, it
also provides information about how inputs and outputs of each component work and
how they function with other components. It can also give either broad or in-depth
overview of the specific workings of each component through how the data is processed
and manipulated.

Dataflow overview of entire system:

Figure 5: Owverall Dataflow diagram of the entire system

This dataflow diagram shows the overall concept of how the data is intended to flow
through the system, from being processed and manipulated through each component
and what the outputs are of each. Due to the size, this will be broken up and individ-
ually explained.

42

Data collector

Historical Price Historical Price Historical Price

data CSVs data CSV data CSV
(Bitfinex) | !Gerpml) ! (Coinbase)
Data Collector (A
. 1 Ucu:ranck UEU:WETI%'Ocu“rranUF,ri(E Collector o Live Prices CSV
Coinbase O i i :
i i S -
J__) ¥ ¥ Save to CSV O
LiSiDets Extract 1D Average O Average O
. 3 e —
High. Low, = Price for . pricefor || 7

- - -2
Gemini APl OOl ——jye Data--% Mid prices each hour Historical Prices
>

Live DaE; _ Loop after 1 1D
- 4~ s hour (Only

Bitfinex AP C)’ Live prices)

Tweet Collector [Data Normalisation & Preprocessing (an]
Tweepy O =
Streamer Fix
indentations, Detect Language 1D
b \L’ new lines and
e line breaks Tokenise O

Stream Live Data Text 1D

—_—
Extraction Remove O N

' Special
Twitter API O Characters Remove O Data Collector
77777777 Historical Data ——————-# non-latin i | Tweets
Compare against O — =
Stopword for each

language

If not English———f Drop Tweet 12

Figure 6: Data collector Dataflow diagram

This dataflow diagram shows the part of the system responsible for the collection and
processing of both historical data. This is split into three parts: Price collector, Tweet
collector and tweet normalisation and natural language pre-processing.

e Price Collector - Processes two forms of data, Historical and Live price data.

Historical data is extrapolated from three CSVs that contain the historical
price every hour for the past year, from a historical price tracker. At this point
in the project, it was identified that historical price trackers do not average the
price data from exchanges as previously identified; therefore this data will need
to be merged and averaged to create the unbiased hourly price needed.

Live data is extracted directly from the three exchanges APIs shown through
REST endpoint requests.

Data from both, as separate processes independent from one another, are
averaged by extracting the High, Mid and Low hourly prices. This averaged price
per hour for each exchange are then averaged together to obtain an unbiased
hourly average. The price is then saved to a CSV of historical or live prices
respectively. The difference in the flow of data is that of Live prices, in which
the process is looped every hour to extract the new hourly prices.

e Tweet Collector - Streams tweets from Twitter using Tweepy, historical tweets
are manually collected directly from the Twitter API. Both are fed through the
normalisation and data pre-processing stage.

43

e Data pre-processing - This involves cleaning the initial data by removing line
breaks and new lines that occur in the data, removal of special characters that
are standard in tweets ('#’,’@Q” and urls). The data is then fed into a language
detection system which tokenises and compares stopwords in the text to NLTK
package supported languages. Depending on whether the text is identified as be-
ing predominately English or not determines whether or not the tweet is dropped
and not used in the network. If the majority is in English, non-English characters
are removed as these can still be present in the text.

Analysis Engine

Data Collector|
Tweets
Save to CSVO

Live Sentiment
csv f&-Live Tweet Sentiment:

& Historical Tweet Sentiment
‘ m

Analysis Eng|ne ! A
Spam Filter D Natural Language 1D,
Processing

Dataset Creation o
P Tt D e Sentiment Analysis - O
Classify Text O Vad
e Tke O Test Data Predictit O e T — < Samme USRS &
pam DAaset et 3 random ~25%> Spam == il not
sample of
? ;
e v Generate O
A Test Filter O Classify O e Ngrams
Train Data i y (P i TN
T
} v
l Y Remove O
bt Stopwords.
Accurac vy O &
v Stats b
Train Filter O Stemming O
K of Text Naive Bayes IO

X aive
Accesses Model ~=0nly on Spam Training-» Classifier

Classification Model

Figure 7: Analysis Engine Dataflow diagram

This dataflow diagram shows the part of the system that is responsible for training
a spam filter, creating the model that’ll be used to identify if the tweets from the
data collector are unwanted - spam. This system is also responsible for assigning
the polarity classification to the tweet through sentiment analysis conducted by the
VADER package [13].

e Spam filter training - The initial step in this system is to train the Naive Bayes
Classifier using the pre-labelled spam dataset which contains an unbiased amount
of either spam or ham tweets with their respective labels.

This data is split into two samples, training and test sets 75:25 respectively
and the Naive Bayes classifier trained and validated against these datasets after
pre-processing of the data occurs on the data to prepare it.

44

orical
sentiment CSV

Data pre-processing - The tweets from both training and testing the filter and
from live and historical tweets are processed through this section.

This section of the system is primarily used to process the tweets for the filter
to classify the data and doesn’t directly modify the live and historical tweets. The
data is processed through various natural language processing techniques such as;
Tokenisation, Ngram generation, stopword removal and stemming.

Classifier Modelling and Model creation - Once the data is pre-processed, the
data is classified, and the prediction model created, which later used to classify
the historical and live tweets.

Sentiment Analysis (VADER) - On a separate route from the spam filter training,
using the past and live tweets, the sentiment analyser VADER performs analysis
on the tweets and assigns a polarity classification to each text (Negative, Neutral,
Positive and calculates the compound score which is the difference between the
negative and positive ratings compound).

Storage - The polarity classification and tweets are then saved to their relevant
CSV files for historical and live data.

45

Neural Network

Neural Network Al
Preprocess Data and create Datasets = Model Network =
—— e Create LSTM D
xtrac xtrac
Historical Historical Prices Price Compound
sentiment CSV Scora** Initialise O
core
Model
V- %
Merged H
Data * || 1st layer Input & Compile Model =
Units
loss method ()
Extract O Rest 25% as O
| Random — Test data
v 75% for Train Data (X)
Merged Data Optimiser
i i Dropout (N s A
2nd Layer O 4th Layer Output O
Units Units
; [Dropout () Dropout ()
¥ Train Data
Train Data (X)
)
Accuracy
& b 4 Statistics
\ 3rd Layer o y
Units y g
Accuracy O
Gt (A Statistics
\ A
Network Data

Test Data
(x)

Tue Data | <Appends>
Fit Datasets A

ends

v Train Data (X) Train Data (Y)
Test Data
Predict
e = y
Validation Data Predict Data Graph Plottin o
Train Data (X) 1l P 9
Test Data (X)
Test Data (Y) Network Model

-------- Creates Network Model--+--3>

Figure 8: Neural Network layout Dataflow diagram

The dataflow diagram in figure § shows the part of the system that is responsible for
training and creating the neural network model. The dataflow diagram shows how
the network will be trained, and the layers of a possible solution to the network. The
model shows four layers which may not be the solution that will be implemented but
is there to show a representation of a number of layers that could be applied.

e Merging of Datasets - Data from both historical datasets are merged to create
one dataset with mapped price and sentiment for each hour. *This is a specific
process that is different from the system that does not include sentiment for
predictions, the merge process doesn’t occur in that system/model.

e Training and Testing - Data is split into two samples of training and testing,
75:25 respectively. **This also doesn’t occur in the system that doesn’t model
with the sentiment.

46

e Training network - The training sets, X and Y coordinates are used to train the

network.

e Testing network - The testing sets, X and Y coordinates of 25% of the initial

data are used to test the validation and accuracy of predictions as these contain
the true data of what the predictions should be.

e Outputs - Accuracy Statistics, true price data and predicted next hour prices are

outputted to respective files for use on the front-end application. The model is
then later used for hourly forecasting.

Future Price Forecasting

Live Prices CSV

F peadand O

extract last

Live Sentiment | |
c5v

Historical Prices

sV bty Readand O
extract last

Historical
sentiment C5V

Future Predictions

|
Loop

Extrat O
Price and
Compound

Test Data (X)

A

Create priceand (N

sentiment test sets >

Network Model

Wait 1 hour D

Test Data (Y)

Accuracy o
Statistics

I
Predict :{)

Test Data (X)

Figure 9: Price Forecasting Dataflow diagram

Accuracy
Statistics

Prediction Data

bl

Appeﬁds

g

Hourly Predictions

True Data

Predict Data

&)

Graph Plotting O

- Appendg--eeeee-3

4Appends'

The dataflow diagram in figure 9 shows how the forecasting system would be imple-
mented. This dataflow shows how it will read live data of both sentiment and price
data, merge, split and conduct regression using the trained neural network model to

predict the next hour price.

e Data merging - (Doesn’t occur with the system that doesn’t include sentiment
in price predictions). Data is consolidated from both historical and live data up
to b iterations. This is due to after the initial hour there will only be a singular

record of price and sentiment data, in which no prediction could be made from
this as there isn’t a sufficient amount of data.

e Prediction - This data is then fitted to the neural network model and predictions
for the next time-step hour are made.

47

Network Data

e Hour Loop - This will then proceed to loop every hour to make the hourly pre-
dictions. Historical price data will cease to be used when there are 5 or more live
price records.

e Outputs - Accuracy Statistics, true price data and predicted next hour prices are
outputted to respective files for use on the front-end application for charting.

Front-end Application

Business @ Prospect D Public @ Speculators @
Investor Investor Investor

) () A L3
I	
I	
I	
I	
1 1 1 1
Frontend Application o

HTML page
Network Data

AJAX (@)

Reads on Refresh True/Predict Data -O)
GET Request (] chart plot
for plotting ——=

Network Data - Reads on refresh---=
Data

T
GET Request (3] T
for Prediction Chatt (A

Prediction Data |~Reads on Refresh - Data Imizesii; [F— €SS Styling

o
HTML table -O
Converts [e

Data to | —— Hourly

HTML tags Predictions

Figure 10: Front-end Application Dataflow diagram

The above dataflow diagram shows the data flow for the front-end application and
how the data is read into the system from the data files generated by the backend
application (Neural network).

e AJAX Requests - These are API file requests for files hosted on the server in
which the system is running on. This loads the data files into the application for
use.

e (SS Styling - Contains design styling for page and charts, loaded upon loading
of a webpage.

e Charting and Tables - Accesses the loaded data from the AJAX requests and
plots the data. Prediction data, only with sentiment and prices are plotted
into a table. There will be separate charts and tables displaying the data from
the backend that hasn’t used sentiment in predictions to aid in establishing a

48

correlation between sentiment and price and whether it affects the hourly price
(Aiming to solve the problem statement)

e Stakeholders - There will be the four stakeholders, outlined in the problem artic-
ulation section, that would be the primary users of this application.

9.2 Interface Design

Cryptosky

hitps:/icryptosky.me

Cryptosky

Bitcein Hourly Price pradictions

50

150
ety L Bo209 R

Tue

Predict ——

Date

Date

Predictad Next Hour Price:

2032019 E

3150

0230034469

25032019 as

374

0226504935

26032019 150

3150

0270937382

27032019 an

418

026584933

Performance Metrics

Foovensqaaz | wemsem | Vean s Enor [omer |

Bitcoin Hourly Price predictions - Without Sertiment

12032018 rasz0is 2520 3208

True Predict === Date

Figure 11: Interface design

Figure 11 above shows the basic idea of the interface design that will be presented to
the stakeholders and aims to be the interface that these stakeholders will use to aid
in their market decisions of Bitcoin. The interface, although simplistic, provides all
the necessary information that any of these stakeholders would need, it also provides

49

information to allow visual comparison on how sentiment affects the hourly price of
Bitcoin, represented as the two charts. The comparison will aid in solving the problem
statement later in the conclusion of the project.

50

10 Implementation

This section will outline the method and process of development of the system to satisfy
the chosen solution, technical specification and the problem statement. Each section
of the system will be outlined and discussed with relevant codes snippets of essential
methods from the system to highlight the processing of data throughout. Additionally,
the order in which the following sections are show was not the order in which they were
developed, the order in which they are shown is to represent the order of how the data
flows through the system, see section 9 - System Design for an understanding of the
flow of data through the system.

10.1 Data collection
10.1.1 Price Time-Series Historical Data

Historical price data was extracted from a CSV historical price tracker, Bitcoin Charts
[44]. This tracker provided the historical data from the three exchanges used for Live
price collection - Coinbase, Bitfinex and Gemini, since the exchanges supported the
cryptocurrency. The data used spans from 2018-01-06 to 2019-01-06.

coinbase = pd.read csv(’coinbase btcusd.csv’)
bitfinex = pd.read csv(’bitfinex btcusd.csv’)
gemini = pd.read csv(’gemini btcusd.csv’)

coinbase .drop (columns=["Currency", "24h Open (USD)", "24h High (USD)", "
24h Low (USD)"], axis=1, inplace=True)

coinbase.columns = ["timestamp", "price"]
coinbase ["timestamp '] = pd.to datetime (coinbase | timestamp’])
coinbase = coinbase.set index(’timestamp’).resample(’1D’).mean().resample

(’1H’) .mean ()
4 similar code for the other 2 exchanges

5 data.set index(coinbase |’ timestamp’])
; for i in data:

data| ’price’] = (coinbase| ’price’|[i] + gemini| price’|[i] + bitfinex [’
price’][i])/3

data
data

data. fillna (method="backfill ")
data.round (3)

Listing 1: Historical price collection and averaging per exchange

51

1

TR W N

3

WO NN N NN NN
S © o 3

=

Due to each of the hourly prices in each CSV for each exchange were averaged from the
‘high’, ‘'mid’ and low prices, the data from each exchange only needed to be averaged
together. This data is averaged and then saved to a CSV containing historical prices
of Bitcoin for the past year.

10.1.2 Price Time-Series Live Data

Live price data, as described in the solution approach, were extracted every hour from
three exchanges - Coinbase, Bitfinex and Gemini were chosen for providing this data
due to being the most popular exchange platforms that provide an API for retrieving
live price data.

The ’high’, 'mid’ and low prices were extracted from the endpoint response and aver-
aged to provide an overall hourly price per exchange.

def coinbase():

try:
client = Client (api_key, api_ secret)
repsonse = client.get spot price(currency pair = 'BTC-USD’)
price = (float (repsonse[’amount’]))
price = round(price, 3)
return price

except KeyError as e:
print ("Error: %s" % str(e))
sys.stdout. flush ()
price = 0
return price

5 def bitfinex ():

try:
response = requests.request ("GET", "https://api.bitfinex.com/vl/
pubticker /btcusd")
response = json.loads(response.text)

price = (float (response[’low’])+ float (response| ' mid’]) + float (
response | "high']))/3

price = round(price, 3)

return price
except KeyError as e:

print ("Error: %s" % str(e))

sys.stdout . flush ()

price = 0

return price

def gemini():
Exact code to bitfinex ()

52

%}

Listing 2: Extraction of Price from exchanges

The above code shows how this was implemented as a system for the price extraction
from the APIs.

These functions are called every hour by a master function which uses the averaged
price from each exchange to average and creates a fair, unbiased hourly price, which
is the saved to a CSV containing the live unbiased price for the hour along with the
time of creation. The function also checks if an error state is returned from any of the
exchange functions and sets the default price to zero, instead of averaging the three
exchanges only the responses that successfully returned a price are averaged.

10.1.3 Historical Tweet Collection

Historical tweets were obtained directly from the Twitter API through a simple Curl
command for the given date range of the past year. Multiple accounts were created to
obtain the amount of data needed, as detailed in the data gathering section under the
solution approach. Due to the vast amount need, 5 tweets averaged per hour for the
past year would require 1.2 requests per day (40320 total to get a whole year’s worth),
totalling 9,050,000 tweets. As this was highly unfeasible with the API access available
for this project, 1 tweet per hour (25 per day, 1 request per 4 days) was obtained rather
than the average, which resulted in only 92 requests needed to get the required data.
i curl —request POST \
2 ——url https://api.twitter.com/1.1/tweets/search/fullarchive /boop.json \
3 ——header ’authorization: Bearer TOKEN" —header ’content—type:
application/json’ \
—data ’{"query": "bitcoin", "maxResults":100, "fromDate
":"201904050000", "toDate":"201904050200"}’ —o data collector/twitter/

temp hist tweets.json \
&& python3 data collector/twitter/sift text.py

Listing 3: Sample Curl request - data saved to json and python scripted called to
process data

These tweets are processed through the spam filter to detect if they were included
unwanted text, cleaned and a polarity classification assigned to each for each hour. The
process of how both the spam classification, pre-processing of the data and polarity
classifications work will be detailed in their relevant sections of the system below.

import tweet collector ++ pre—processing functions

import spam _filter #+ spam filter classification

3 import analysis engine.sentiment analysis as sentiment analysis

1 ## Sentiment analysis and polarity classification (symbolic link to file)

N

53

14

41

43
44
45

46

; def processTweet (tweet, tweetFilter):
now = datetime.datetime .now ()

#Data preprocessing

removedLines = tweet collector.utilityFuncs (). fixLines (tweet)

removedSpecialChars = tweet collector. utilityFuncs () .cleanTweet (
removedLines)

removedSpacing = tweet collector.utilityFuncs ().removeSpacing(

removedSpecialChars [0])
tweetLength = tweet collector.utilityFuncs () .checkLength (removedSpacing

)

if tweetLength = True:

Drop tweet if too short

##Check if the tweet is predominantly English
checkIfEnglish = tweet collector.utilityFuncs () .detectLaguage (
removedSpecialChars [0])

if checkIfEnglish = True:
Remove non—English Characters

tweetText = tweet collector.utilityFuncs ().remove non_ascii(
removedSpacing)
print ("Cleaned Tweet: ", tweetText)

sys.stdout . flush ()
cleanedTweet = tweetText+’ ’+removedSpecialChars|[1]

Check with spam filter — drop if classified as spam
classification = tweetFilter.testTweet (cleanedTweet)

if classification = False:
- Perform Sentiment Amnalysis
ovSentiment , compound = analyser.get vader sentiment(cleanedTweet

try:
Save to historical tweets file
with open(’data collector/historical tweets.csv

", mode="a’) as

csv_file:

writer = csv.DictWriter (csv_file, fieldnames=[’created at’, ’
tweet’, ’sentiment’, ’compound’])

writer . writerow ({ "created at’: now.strftime ("%Y—%m%d %H:%M")
, 'tweet’: cleanedTweet, ’sentiment’: ovSentiment, ’compound’:
compound })

return True
except BaseException as exception:
print ("Error: %s" % str (exception))
sys.stdout. flush ()

o4

1

return False
else:
other finished else statements with print statements

Listing 4: Sift-text python script - used alongside Curl command in Listing 4

As detailed in the comments for the code, this function conducts external functions and
data manipulation on the data, most of which are predefined in the tweet collector.py
script. These are not redefined in this function to reduce code duplication throughout
the system and hence are imported at the beginning of the file. Due to the nature of
spam filtering tweets were inevitably removed; therefore a few hours of data were miss-
ing. This was resolved by making another request for that specific hour and averaging
the sentiment for the given hour to fill missing data.

10.1.4 Live Tweet Collection

Live tweets were obtained through the use of the Tweepy package to stream current
tweets per hour from the Twitter API. Spam filter detection, data pre-processing and
language detection are also conducted on this data and are defined within this python
script ‘tweet collector.py’, these functions are described in the relevant sections in the
Data processing section.

On the initial running of the tweet collector.py’ script the CSV files for storing tweets
and tweets are initialised, which will contain the polarities assigned by the VADER
analyser. More importantly, it initialises the spam filter and trains it based on the
pre-labelled spam dataset.

Functions used for training relate to relevant functions defined under the filterSpam
class which are used to create the training and test datasets. This function is described
in the Spam Filtering section below.

The streaming of tweets are handled by the Tweepy package and is first initialised upon
starting of the python script. The streaming method works by establishing a listener
and authenticated with the Twitter API; it then listens on that connection for data.
This streamer can also filter on language and a specified hashtag which is loaded from
a env’ file also containing the API keys for authentication.

class Streamer():
def stream tweets(self , tweets file, temp tweets, hashtag,
tweetFilter , analyser):
listener = Listener (tweets file, temp tweets, tweetFilter , analyser
)

auth = OAuthHandler (keys () .api_ key, keys().api_ secret)
Load API keys from env file and set auth

95

print ("Console: ", "Authorising with twitter API")
sys.stdout. flush ()

auth.set access token(keys().access token, keys().access secret)
Set access keys

print ("Console: ", "Streaming Tweets")

sys.stdout. flush ()

stream = Stream (auth, listener , tweet mode=’extended’)

stream . filter (languages=["en"], track=hashtag)

#4 Execute streamer and filter for only English region tweets and
by specified hashtag (’Bitcoin’)

Listing 5: Tweepy Streamer setup

Once the listener and streamer are declared, and Tweepy begins listening all data is
processed through the on_ data method. In this function, the tweet is extracted from
the response and performs data pre-processing, language detection, spam classification
and sentiment analysis on the data. Additionally, there is an initial time interval that
checks for a time limit - this is used to ensure that the script runs for just under an
hour and restarts every hour. This allows the average of the gathered tweets’ sentiment
to be summed for that hour and then used for the network price predictions.

The tweet text can be nested in multiple attributes in the response; this depends on a
few factors of what the tweet is and how it was posted on Twitter. If a user retweeted
the tweet, the text of the tweet would be nested under retweeted status’ in the JSON
response, also there is a check to see if the tweets are above the original twitter tweet
character limit (140 characters). This is a possible legacy parameter in the Twitter
API but is checked upon data response. If an attribute ’‘extended tweet’ exists the
character limit for the tweet exceeds 140 but is under the 280 characters hard limit of
Twitter, this exact filtering is the same if it in a non-retweeted tweet.

As for the key facts about this function; the length of the tweet is checked to be above
5 (tokenised) due to any tweets with fewer words will not contain enough information
to be given a proper polarity classification and almost always returns as 100% neutral,
which is of no use and will have no effect on the hours average sentiment. The entire
code in the function is encapsulated in a try-catch to check if data was received and
handles non-responses and missing data. If there was no data the issue is ignored unless
a connection between the streamer and API is broken it otherwise exits the script. As
for the processing of the tweet the code in Listing 4 is used.

56

10.2 Data pre-processing

Various techniques and tools have been utilised throughout the development of the
system to process the data appropriately so it can be parsed by VADER, spam filter
and neural network. This section will cover the crucial functions that provide such
functionalities and that are called throughout the system, as seen in some of the above
code snippets.

10.2.1 Tweet Filtering

Various ’Utility Functions’ have been used to initially filter out unwanted data from
tweet text. These functions called by, both live tweet (tweet_ collector.py) and historical
tweet (sift_text.py) processing, prior any polarity classification or storing of tweet data

to CSV files.

def cleanTweet (self , text):
Function to clean tweets, removes links and special characters
return re.sub(r’(["0—9A—Za—z \—\%\AE\$ \t]) |(Q[A-Za—z0—9]+)|(http\S+)
", 77, text), 7 ’.join(c¢ for ¢ in text if ¢ in ji.UNICODE EMOJI)
Also removes emojis from text — later re—added due to VADER
supporting emoticons

def removeSpacing(self , text):
return re.sub(r’(+)’, 7 7, text)
Removes extra spacing that may be left between words

def fixLines(self, text):
return re.sub(r" ([\r\n])", " ", text)
Removes line breaks and new lines from text

def remove non ascii(self, text):

return ’’.join (i for i in text if ord(i)<128)

User after language detections and removes non—English characters
from text

def checkLength(self , text):
tokens = text.split ()
if len(tokens) <= 5: # Tokenisation
return False
else:
return True

Listing 6: Basic data filtering and processing function - defined in "tweet collector.py’
Due to VADER being a lexicon-based sentiment analyser little data pre-processing

needs conducting on the tweet text. The functions above primarily remove unnecessary
text from the tweet that will either provide no insight into public opinion or can obstruct

57

a proper classification of the sentiment - such as the existence of URLs in the given text.
Additionally, the 'clean tweet’ function removes the emojis in the given text if any are
presently using the emoji package - which in turn is another lexicon that compares the
given text to any emoticon contained within the lexicon. These are removed at this
stage but are later re-added back to the text as VADER support emoticon classification.
The last function in 'utility functions’, ‘checkLength’ splits the text up into individual
words (tokens - a process of tokenisation), this is used to check the total length of
a tweet. If the tweet is less than five words, it is dropped from classification. This
is due to text containing less than five words are less likely to produce a meaningful
polarity classification than texts above that word limit. Additionally, any meaningful
information is unlikely to be forced into five words.

10.2.2 Language detection filtering

The language detection feature of the system is used as an additional filter for filtering
out non-English tweets. As discussed in the solution approach, Tweepy/Twitter API
provides a means to filter out non-English based tweets. This, however, will not work if
the user has settings on Twitter such as the prefered language and the region set to be
English. Due to this, non-English characters can still be contained within the collected
tweets; thus these are detected and filtered with the language detection function.

1 def detectLaguage(self |, text):

+ # Split words up into tokens — tokenisation
5 tokens = wordpunct tokenize(text)

7 # Shift to lower case
s words = [word.lower () for word in tokens]

o # Compute per language in nltk number of stopwords in text
1 for language in stopwords. fileids ():
2 stopwords set = set (stopwords.words(language))
words set = set (words)
14 common _elements = words _set.intersection (stopwords set)

16 language ratios|[language| = len (common elements)
17 # Form ratio scores for each language detected from stopword
comparison

19 ratios = language ratios
20 highest ratio = max(ratios, key=ratios.get)
Extract highest ratio language used in given text

%]

print ("Console: Text is — ", highest ratio)
sys.stdout . flush ()

NN NN NN
N o 2

58

if highest ratio = ’english ’:
return True
else:
return False
If text is not predominately English drop tweet

Listing 7: Language detection and filter function [45|

The language detection function uses several natural language pre-processing tech-
niques to identify the most predominant language for the given text. This is accom-
plished by first tokenising the text into tokens and converting them to lower case -
this is so that the stopwords can be identified. For each of the languages supported
by the Natural Language Toolkit Python package, the stopwords are identified in the
text and compared to the stopwords in the language corpus’ in NLTK. The ratios for
the individual languages are formed, and then the predominant language identified. If
the language is not predominantly English, the tweet is dropped.

There is however an issue with this approach, if a tweet contains too many special
characters - characters that are allowed, the tweet occasionally is not classified as
English even when it predominantly is upon visual inspection; therefore the tweet is
dropped and not processed. This isn’t a significant issue as about 3000 tweets can
be collected in an hour, and some of these would be filtered out by the spam filter
regardless.

Additionally, an n-gram method could be used to distinguish the language of the given
text and may perform more accurately than the word-based approach that was im-
plemented [46]. This could be a later improvement, as the n-gram approach requires
a corpus for each language to compare against to be presented, the word-based ap-
proach is sufficient for its use case. Therefore it could be used as a comparison between
approaches and seen as a possible improvement at a later date.

59

N

10.2.3 Spam filter - Tokenisation, Ngrams, Stopword removal and Stem-
ming

Prior to any text being processed to both train the Naive Bayes classifier of the spam
filter or to classify live tweets, the data needs to be pre-processed to extract the feature
vetors from the text, so that the classifier can identify the probability of each word in
the given text. The explanation of how this classifier functions will be detailed in the
‘Spam Filtering’ Section.

1 def processTweet (tweet, gram = 2):

2 tweet = tweet.lower() # convert to lower case

1+ words = word_tokenize (tweet) # Tokenise words in text
5 words = [w for w in words if len(w) > 2]

6 # remove words that are not greater than 2 characters

8 if gram > 2: ## Increasing grams can increase accuracy
9 w =[]

10 for i in range(len(words) — gram + 1):

11 w+= [’ ’.join(words[i:i1 + gram]) |

2 return w

14 # Remove stopwords

15 sw = stopwords.words(’english’)

16 words = [word for word in words if word not in sw]
17 # Create new dict without stopwords

19 stemmer = PorterStemmer () # Stem words
) words = [stemmer.stem(word) for word in words]
Create new dict of stemmed words

[t

N

return words

NN NN

Listing 8: pre-processing of data prior to being used by the spam filter
The actions performed on the text consist of:

e Convert to lower case: This is due to that 'DROP’” and 'drop’, and likewise words
convay the same meaning thus these are simply converted to all lower case.

e Tokenise words: This splits the text into individual words. A dictionary is then
created from the tokens that are above the length of 2 - due to words that are of
less ’is’, "he’” and ’if” will not contribute to spam detection and are seen as generic
words in the English language

e Ngrams: This is implemented to provide richer word sequences for the spam
filter classification, as explained in the litrature review use of ngrams can increase
accuracy.

60

1

2
3
1

e Stop words Removal: This removes stopwords such as ’this’, 'we’ and 'now’ from
the text. Due to these common words carrying less importance for sentiment
analysis.

e Stemming: Reduces words down to their smaller form, as in it remove suffixes
from inflected words - 'studying’ become ’study’ [47]. The Porter Stemmer works
by removing the suffixes from the text - 'going’ becomes 'go’, however, this applies
to other words such as ’'leaves’ becomes ’leav’ which is not a word. However,
this method will be applied equally to all words containing such suffixes so all
variations will become so, thus still allowing the probability classifications to
occur on the word as all variations will be the same.

As discovered from [47], lemmatisation could be an alternative and arguably a better
solution to stemming. Lemmatization works fundamentally the same as stemming but
reduces the inflected words properly ensuring that a root word belongs to a language.
Using the same words that are used to describe stemming, lemmatisation reduces 'goes’
to ’go’ and ’leaves’ to 'leaf’ as an example - by removing the suffixes down to create
the actual root word. Although lemmatisation will provide the classifier with an actual
English word, stemming regardless still reduces the words down to a similar form, this
added with a lemmatiser needing a corpus for classifying the words to their root words
and additional computational time to do so, the former of using a stemmer is sufficient
for the use case.

10.3 Spam Filtering

This section of the implementation will describe how the spam filter is initialised in
the tweet collector, how it is trained and how it classifies tweets as being either spam
or ham (wanted data).

The function is initialised within the tweet collector, that creates the training and
testing datasets, and tests classifier on hard specified tweets and checks their classifi-
cation.

class filterSpam (object):
def trainFilter (self):
self . dataset () ## Split dataset 75:25

self.train () /4 Train based on training dataset

def dataset (self):
self .data = pd.read csv(self.training set)

self.data|’class’| = self.data|’ classes’|.map({ ham’: 0, ’spam’: 1})
/+ Remap labels of ’Spam’ and 'Ham’ to 1:0 respectively

self.data.drop ([*classes '], axis=1, inplace=True)

61

33

34

35

7

Drop old labels

self .trainIndex , self.testIndex = list (), list ()
for i in range(self.data.shape[0]):
if np.random.uniform (0, 1) < 0.75: +# Random shuffle data of 75%
self.trainIndex += [i] +# Create training index

else:
self.testIndex += [i] # Create testing index
self . trainData = self.data.loc[self.trainIndex|]
self . testData = self.data.loc[self.testIndex]

/

Define datasets by getting values from first 75% and then 25%

self .trainData.reset index (inplace=True)
self .testData.reset index(inplace=True)
Reset indexes

self .trainData.drop (| ’index’], axis=1, inplace=True)
self .testData.drop ([’index’], axis=1, inplace=True)
Drop old index

def train(self):
self .spamFilter = spam filter.classifier (self.trainData)
Initialise the spam filter with the 75% dataset

self.spamFilter. train ()
Train

def testData Prediction(self):
Classify data from test dataset
prediction = self.spamFilter.predict(self.testData[| tweet’])
return prediction

; def testPrediction(self):

Test Spam/Ham tweets — should return True and False respectivly
spam = spam _filter.processTweet ("Earn more than 0015 btc free No
deposit No investment Free Bitcoins — Earn $65 free btc in 5 minutes

bitcoin freebtc getbtc")

ham = spam filter.processTweet("Bitcoin closed with some gains in month
of February")

#+ Process Tweets — Tokenise and Stem
hamTweet = self.spamFilter. classify (ham)
spamTweet = self.spamFilter. classify (spam)

Classify both tweets

def filterStatistics (self, prediction):
Get performance metrics for prediction data compared to actual test
data
spam _filter . metrics(self.testData| class’|, prediction)

62

61 def testTweet (self , tweet):

62
63
64
65
66

67

Used for live tweets classification
processed = spam _filter.processTweet (tweet)
classified = self.spamFilter.classify (processed)

return classified

Listing 9: Spam filter training Class - tweet_ collector.py

trainFilter: is a function that calls the dataset function which created the training
and testing dataset, followed by the train function which trains the initialised
classifier. This function’s sole purpose is to serve as a parent function that only
needs to be called to perform the child functions once.

dataset: This function loads the pre-labelled spam dataset, remaps the labels to
integers 0:1 to ham:spam respectively, creates a dictionary with an index of 75%
of the original data for the training dataset and 25% for the testing dataset. This
function does this by extracting the data at the set point from the spam dataset
into the relevant new datasets which resetting indexes and dropping old columns
to form appropriate data.

train: Is used to call the classifier function defined in the spam_ filter script and
passes the training data for it to initialise then train on.

testData_ Prediction: Is a function similar to the ’train’ function, but calls the
'predict’ function defined in spam_ filter to test the classifier on the test data
and returns the predictions made, which is used later on in the 'filterStatistics’
function to calculate the accuracy of the classifier.

testPredictions: This function is used to test the accuracy of the trained classifier
with pre-defined tweets that are assumed to be either spam or ham. The primary
goal of this function is to ensure that the classifier correctly classifies the two
tweets as either spam or ham appropriately. The text is processed through the
'processTweet’ function previously described to transform the tweets into tokens
ready for classification.

filterStatistics: Is used by the 'testData_Predictions’ function to calculate the
accuracy of the classification model using the test data and prediction data. The
‘metrics’ function is defined in the spam_ filter script.

testTweet: Is a function used on the live tweets by the ’on data’ function also
outlined previously to process the tweets data and classify it as either being spam
or not, the 'on_data’ function then handles the result accordingly.

63

1
2
3
4

N

)

TR W N &

N

8

WM N NNN N NN

10.3.1 Naive Bayes model

The spam filter classifier, using a Naive Bayes model, was coded from scratch. This was
ultimately unneeded as the Scikit-learn python package comes with four inbuilt Naive
Bayes classification models (Bernoulli, Complement, Multinomial, Gaussian)[48]|. The
model was coded from scratch due to finding information on how this would be done
with techniques such as TFIDF and Additive Smoothing as detailed in the literature
review, the tutorial that helped the greatest Spam Classifier in Python from scratch
[38] [49]. For an explanation of how the maths work behind this classifier see Literature
review sections 'Bag Of Words’, "TF-IDF’ and ’Addictive Smoothing’.

The Naive Bayes model implemented was a multinomial Bayes model as the data used
for classification was of multinomial distribution and categorical. This algorithm was
not compared to the Scikit-learn’s inbuilt model for accuracy as this was not the focus
of this project.

def TF and IDF(self):
%+ Bag Of Words implementation

for entry in range(noTweets):
processed = processTweet(self.tweet[entry])
count = list ()
#To keep track of whether the word has ocured in the message or not. TF
count
for word in processed:
if self.labels[entry]:
self . tfSpam [word| = self.tfSpam.get(word, 0) + 1
self .spamCount += 1
If label for data is spam then add words to spam list
else:
self .tfHam |[word| = self.tfHam.get (word, 0) + 1
self .hamCount += 1
If label for data is ham then add words to ham list
+ Addictive Smoothing — if current word is not seen add count list
if word not in count:
count += [word]
for word in count:
Loop unseen word list
if self.labels|[entry|:
self .idfSpam [word| = self.idfSpam.get(word, 0) + 1
else:

self .idfHam [word| = self.idfHam.get (word, 0) + 1
def TF IDF(self):
Calculate probability of word being spam or ham based on occurance in
text compared to counted sets along with relevant keys

for word in self.tfSpam:
self .probSpam|[word| = (self.tfSpam[word]|) * log((self.spam + self.ham

64

16

) / (self.idfSpam[word]| + self.idfHam.get (word, 0)))
self .sumSpam += self.probSpam |[word]

for word in self.tfSpam:
self .probSpam [word] = (self.probSpam|[word] + 1) / (self.sumSpam + len
(list (self.probSpam.keys())))

for word in self.tfHam:

self .probHam [word] = (self.tfHam[word]) * log((self.spam + self.ham)
/ (self.idfSpam.get(word, 0) + self.idfHam|[word]))

self .sumHam += self.probHam [word]
for word in self.tfHam:

self .probHam|[word| = (self.probHam|[word| + 1) / (self.sumHam + len (
list (self.probHam.keys())))

Calculate total amount of spam words identified

self .probSpamTotal, self.probHamTotal = self.spam / self.total, self.
ham / self.total

Listing 10: classifer class of spam_filter.py

10.3.2 Classification

The classification function aims to classify the pre-processed tweet data as either spam
or ham based on the term-frequency and probabilities calculated in the "TF IDF’
function. This conducted for each word in the processed tweet is identified if the word
is contained in the spam set, based on the level of occurrence the probability is assigned
a weight (The more it occurs, the more likely it is a generic word), this is also identified
for the level of occurrence in the ham set. Totals for the probability are formed, and
the total count for both spam and ham are added to the spam and ham probabilities for
the processed tweet. If the spam probability pSpam is higher than the ham probability
pHam based on the level of occurrence of each word in the modelled respective sets, a
boolean is returned based on which probability is higher - which identifies if the tweet
is predominantly spam or ham (True or False).

def classify (self, processed):

pSpam, pHam = 0, 0

for word in processed:
if word in self.probSpam:
pSpam += log(self.probSpam[word])
else:
pSpam —= log (self .sumSpam + len (list (self.probSpam.keys())))
if word in self.probHam:
pHam += log(self.probHam |[word])
else:
pHam —= log(self .sumHam + len(list (self.probHam.keys())))

65

13

15

16

-

N

e

6

pSpam += log(self.probSpamTotal)
pHam += log(self.probHamTotal)
return pSpam >= pHam

Listing 11: Classify Function of Parent classifier class of spam_filter.py

10.3.3 Predict

The predict function under the classify parent class used by the tweet collector to
test the trained classifier on the test dataset. For each tweet in the dataset, the data
is processed through the processTweet function previously described, this returns a
dictionary of words in the text which then used in the classify function described
above to identify whether or not each tweet is predominantly spam or ham, the result
of all tweets are returned. The tweet collector then uses the returned array in the
filterStatistics function, also previously described, to calculate the performance and
accuracy of the trained model.
def predict(self, testData):

result = dict ()

for (i, tweet) in enumerate(testData):

processed = processTweet (tweet)

result [i] = int(self.classify (processed))
return result

Listing 12: Predict function of parent classifier class of spam _filter.py

10.3.4 Metrics

The metrics function calculates the F-score, precision, recall and accuracy (Suitable
performance metrics for classification models) of the model when comparing the pre-
dicted class labels to the real class labels of the test dataset used in testing the model.
By using these metrics, the performance of the model can be evaluated and later com-
pared to a competitor model - for this reason, the metrics are calculated. A discussion
of what these metrics show and the level of accuracy of the model are discussed in the
Testing section later.

def metrics(labels, predictions):
true_ pos, true neg, false pos, false neg = 0, 0, 0, O

Identify the true pos/negs and false pos/negs of the predicted model
of predicted values compared to the actual true values of the test
dataset class labels

for i in range(len(labels)):
true_pos += int(labels[i] = 1 and predictions|[i]
true neg += int (labels[i] = 0 and predictions|[i]

—_
~—

66

8

10

11

12

13

false pos += int(labels|[i] = 0 and predictions|[i| = 1)

false neg += int (labels|[i] = 1 and predictions[i] = 0)
precision = true pos / (true pos + false pos)
recall = true_ pos / (true pos + false neg)
Fscore = 2 % precision * recall / (precision + recall)
accuracy = (true pos + true neg) / (true pos + true neg + false pos +

false neg)

print ("Precision: ", precision)
print ("Recall: ", recall)

print ("F—score: ", Fscore)
print ("Accuracy: ", accuracy)

Listing 13: Metrics function for calculating the performance and accuracy of the model

10.4 Sentiment Analysis

This section of the implementation outlines how the VADER sentiment analyser is
implemented and performs with the rest of the system. The get sentiment class and
its __init__ function are called in the tweet collector script upon starting and by
the historical tweets script to initialise the analyser from the VADER package. Both
scripts then call get vader sentiment when needed to give polarity classification to a
tweet.

class get sentiment(object):
def get vader sentiment(self , sentence):

Calculate the polarity scores of the provided tweet
score = self.analyser.polarity scores(sentence)

Split dict into overall sentiment and compound

sentiment = list (score.values())
compound = sentiment [3:]
compound = compound [0]

sentiment = sentiment [:3]

Compare and find overall sentiment

score = max(sentiment)
pos = [i for i, j in enumerate(sentiment) if j = score]
if pos|[0] = 1:
print ("Console: ", "Tweet is overal Neutral — Score: ", score)

return neg or pos which ever is higher
if sentiment [0] > sentiment [2]:

score = sentiment [0]
else:
score = sentiment [2]

67

N
[

NN N
o

return score, compound
else:
return score, compound

Listing 14: VADER polarity classification

The get _wvader _sentiment function provides the polarity scores for the provided tweet.
The scores are split into polarity and compound to compare the positive and negative
scores to identify the overall greater sentiment in the given tweet. By doing so helps to
identify if the tweet was overall negative or positive. The compound score is separated
and used separately.

10.5 Recurrent Neural Network - LSTM

This section of the implementation describes and discusses how the LSTM neural
network is configured, trained, tested and used to create the model later used for price
forecasting for both neural networks - with and without hourly sentiment embedded
in datasets. Its performance metrics that were calculated to verify the accuracy for
the model, appropriate to regression models and K-fold validation implementation are
discussed.

Additionally, this section also discusses the code from the neural network that has
the sentiment embedded in the datasets; comments are made in the code snippets
with the reduced code that consists of the neural network and is due to each neural
network having almost the same code. The reasons behind not implementing both
networks in the same Python script was down to perform. Due to Python executing
code synchronously and due the neural networks needing to ran on the dot of an hour
and at the same time the code was divided and executed individually. This also reduced
the need to recode most of the functions to loop and perform tasks for each network
at every given stage of the network even if the majority of the code was duplicated.

10.5.1 Dataset Creation

The datasets for training (train X and train_Y) and testing (test X and test Y) are
formed and shaped for model training. A look back of 2 is used to create a timestep
of one record to ensure predictions are forecasted for the next record. Prices are also
scaled between 0 and 1 due to sentiment ranging in the same values and is a standard
for model creation to speed up regression and model training as the data is of smaller
values - using the scikit-learns MinMaxScaler function.

A function for merging the two datasets, price and sentiment occurs using the look
back, takes place prior to the training (train X and train_Y) and testing (test X and
test_Y) are formed. This function is different for the two networks as one includes the
sentiment at the position of its respective price.

68

1 def data(self):
> self.preprocess()
3 # Pre—process and extract required data from dataset

5 loopback = 2
6 # Set lookback for dataset creation — for 1 record timestep

s train_ X, train Y = self.create sets(self.price train, loopback, self.
sentiment data[0:self.price train_ size])

o test X, test Y = self.create sets(self.price test, loopback, self.
sentiment data|[self.price train size:len(self.scaledPrice)])

10 ## Create datasets (!sentiment parameters are not passed into the
neural network the doesn’t embedded the sentiment alongside price data

H

12 train X = np.reshape(train X, (train X.shape[0], 1, train X.shape[l]))
15 test X = np.reshape(test X, (test X.shape[0], 1, test X.shape[l]))

15 self .model network(train X, train Y, test X, test Y)
16 # Call network function to train network

15 def preprocess(self):
1o self.model data = self.lstm data[[' price
Istm data|’created at’]).mean()

9

, “compound’ |]. groupby (self.

20 #Extract price and compound columns from dataset

21

22 self.sentiment data = self.model data|’compound’].values.reshape(—1,1)
23 self .price _data = self.model data|’ price’|.values.reshape(—1,1)

24 ## Reshape data to column—wise

25

26 # convert types to float32 for consistancy

27 self.sentiment data = self.sentiment data.astype(’float32’)

25 self.price data = self.price data.astype(’float32’)

so self.scale = MinMaxScaler (feature range=(0,1))
31 self .scaledPrice = self.scale.fit transform(self.price data)
32 # Scale price to values between 0 and 1

34 self.price train size = int(len(self.scaledPrice) * 0.7)
35 # use 70% of dataset for training and 30% for testing
36 self .price test size = len(self.scaledPrice) — self.price train_ size

38 # Get said train data on size

10 self.price train = self.scaledPrice[0:self.price train_ size:|

41 self .price test = self.scaledPrice[self.price train_ size:len(self.
scaledPrice) :]

12 #set sizes of dataset to be mapped later

11 def create sets(self, data, lookback, sentiment):
data_ X, data Y = [], []

69

16

17

49
50
51
52
53

54

1

12

for i in range(len(data) — lookback):
if i >= lookback:
Sets timestep if data by a record
pos = data[i—lookback:i+1, 0]
pos = pos. tolist ()

Append sentiment at position of hours price

pos.append (sentiment [i]. tolist () [0])

Above pos is not conducted on neural network with no sentiment
embedded pos.append(0) occurs instead

data_X.append (pos)

data_Y.append(data|[i + lookback, 0])
return np.array(data X), np.array(data_Y)

Listing 15: Dataset creation and preprocessing

10.5.2 Training and Testing Model

The neural network is set up with four layers each of which configured with 100 LSTM
cells, with a dropout of 0.2 each, and returning sequences to each other layer. A dropout
was used to ensure that the data would not be overfitted, by setting the dropout to
0.2 probability, 80% of the data on each layer is retained for the next layer. Return
sequences allows for the returning of the hidden state output for each time step and
ensures the next LSTM layer has 2 inputs that carry over from the previous layer,
which are the old weights and value outputs from the previous layer.

self .model = Sequential ()

44+ 1st layer — input layer

self .model.add (LSTM(100, input shape=(train X .shape[l], train X.shape
[2]), return_ sequences=True))

self .model.add(Dropout (0.2))

#4+ 2nd Layer
self .model.add (LSTM(100, return sequences=True))
self .model.add(Dropout (0.2))

3rd Layer
self .model.add (LSTM(100, return_ sequences=True))
self .model.add (Dropout (0.2))

#HE 4th Layer without sequences
self .model.add (LSTM(100))
self .model.add (Dropout (0.2))

self .model.add (Dense (1))

self .model.compile (loss="mean squared error’, optimizer=’adam’, metrics
=[’mse’, ’mae’, ’mape’])

70

w N e

NN N NN
SR O 2

NN NN
® N O

self . model.summary ()
Model summary of params and dropout at each layer

history = self.model. fit (train_X, train_ Y, epochs=200, batch size=1000,
validation data=(test X, test Y), verbose=0, shuffle=False, callbacks
=[TQDMCallback () |)

fit model using train data and validate using the test data

yhat = self.model. predict (test X)

scale = self.scale

scaledPrice = self.scaledPrice

yhat inverse sent = scale.inverse transform (yhat.reshape(—1, 1))
testY inverse sent = scale.inverse transform (test Y .reshape(—1, 1))

Listing 16: LSTM model creation layering compiling and fitting

As per the discussion in the literature review and outlined in the solution approach,
the Adam optimiser was used for the compilation of the model. The loss was calculated
using the mean squared error and the metrics calculated and returned to present the
accuracy of the model in prediction were: mean squared error, root mean squared
error, mean absolute error and mean absolute percentage error. Both the metrics and
predictions made are saved to a CSV that is then presented to users in the server-hosted

UL

The model was fitted on the training sets (X, Y) over 200 epochs with a batch size of
1000 on about 11000 records - was about the total amount of data used to train for a
year. Predictions are then made using the test set resulting in the predictions of "yhat’
which is inverted and rescaled to get original price values to save to a CSV and which
are displayed on the user interface. The model is also validated using the test data as
specified in the model.fit method.

71

s W N

o

NONON NN NN NN
o 3 b et 2

10.6 Future Prediction Forecasting

Future prediction forecasting is implemented as a loop which is executed every hour.
This loads the previous five prices and sentiment data (minus sentiment for the non-
sentiment model) and predicts the next hour price in a one-hour timestep. Due to the
first four hours there is not enough live data, historical prices and sentiment are used
until five hours have passed on initial executing of the network. After such the model
predicts on all re-occurring data up to 1000 records to match the initial batch size the
model is trained on, then only predicts using the past 1000 records due to the gradient
descent of the model being averaged and modelled for a sample size of 1000.

These predictions along with inverted test data are saved to relevant CSVs to be plotted
as graphs on the interface. The function also forms a market prediction of either 'Buy’
or 'Sell’ based on a hard-coded difference threshold of 25%, which suggest that at a
given point between predictions when the best time for a user to either sell or buy
Bitcoin.

price = pd.read csv(live price)
sentiment = pd.read csv(live sentiment)

price tail = price.tail (i)
sentiment tail = sentiment.tail (1)

Get last 5 live prices and predict on them

price tail.index = price tail|’created at’|
sentiment tail.index = sentiment tail[’created at’]

#4+ Example gets last 5 records for some reason

price = price tail[’ ' price’|.values.reshape(—1,1)

sentiment = sentiment tail[’ ’compound’].values.reshape(—1,1)
price scale = self.scale.fit transform (price)

testX , testY = self.create sets(price scale, 2, sentiment)

testX = np.reshape (testX, (testX.shape[0], 1, testX.shape[l]))

yhat = self.model.predict (testX)

yhat inverse = self.scale.inverse transform (yhat.reshape(—1, 1))
testY inverse = self.scale.inverse transform (testY .reshape(—1, 1))
rmse_sent = sqrt(mean squared error(testY inverse, yhat inverse))

print ('Test RMSE: %.3f’ % rmse sent)
#4# Calculate RMSE for prediction

difference = ((yhat inverse[0][0] — self.previous val)/self.
previous_val)*100

Caclulate difference between hour predictions for threshold action
prediction (below)

72

53

Suggest market action based on 0.25 threshold (2.5%)

if difference >= self.threshold:
print ("Buy")

self.state = 'BUY’

elif difference < self.threshold:
print ("Sell")

self.state = ’SELL’

Output prediction made for hour to CSV file for use in UI
try:
with open(predictions file, mode="a’) as csv_file:

writer . writerow ({ "created at’: now.strftime ("%Y-—%m%d Y%H:00:00"), ~’
next hour price’: hour, ’current price’: current, ’'current sentiment’:
senti, ’'state’: self.state})
except Exception as e:

print ("Error: %s" % str(e))
sys.stdout . flush ()

Set the predicted value of current hour
self .previous val = yhat inverse[0][0] ##THE NEXT PREDICTED VALUE IN
AN HOUR

Listing 17: Forecasting future price of next hour for Bitcoin

73

10.7 User Interface

This section describes and discusses how the user interface is implemented, and what
functions were used to both load data from the server and to display this data as
graphical plots and tables on the interface. The aim of the interface, although simple
in design, is to display relevant and useful information to the stakeholders in aiding in
market decisions.

The interface is a simple HTML page that uses JQuery and AJAX requests in con-
junction to display the required data and consists of three charts and two tables - each
displaying predictions and performance metrics. A snippet of the final interface can be
seen in Figure 12 later in the section. This section will describe the reasoning behind
the data displayed and the layout.

10.7.1 Key Functions

Table Generation

The below JQuery script, embedded in the HTML page, is one of two exact functions
for loading data and generating a HTML table containing load data from an AJAX
request, and fills a <div> tag based on provided class name with the generated table
data.

1 <script>

2 // Create table with records based on amount loaded from data from AJAX
request

3 function arrayToTable(tableData) {

4 var table = $(’'<table cellpadding="0" cellspacing="0" border="0"></
table ’);

5 $(tableData).each(function (i, rowData) {
r

6 var row = $(’'<tr style="border:0;"></tr>");
7 $(rowData) .each (function (j, cellData) {
8 row . append ($(’<td style="border:0;" > '+cellData+’'</td>"));

9 9%
10 // For each record present add separatly inside table tags
1 table . append (row) ;

S ST
3 return table;

14 }

16 // Load data from server at base path
17 $.ajax ({

18 type: "GET",

19 url: "metrics.csv",

0 success: function (data) {
$(’.tbl—metrics’).append (arrayToTable (Papa.parse(data).data));
Fill div with class = with generated table

%]

}
})s

NONN NN

=

74

25 </script>

26

Listing 18: AJAX request and plotting performance data to HTML table

The data displayed in these tables consist of the perforance metrics of the trained
model of the network: root mean squared error, mean squard error, mean absolute
error, mean absolute percentage error and loss of the network. Another table on the
interface shows the the hourly predictions made by the LSTM network, showing: date
and time of prediction, next hourly prediction, current hourly price, hourly sentiment
and the suggested market action (Buy or Sell) based on the hard-coded 0.25 (25%)
threshold in the network code. See figure 12 below for visual representation

Graph Generation

The function shown in Listing 19 shows how charting is implemented as a function
in the front-end application, likewise to the table function above in Listing 18, this
function is duplicated multiple times for each of the three graphs presented on the
interface application.

This function uses an AJAX request to load the needed JSON data from the server
and creates an array for each record present in the data. As shown in the function
yhat_inverse and testY inverse are the two data values generated by the neural net-
work script, the former being the predicted next hour values time stepped by 1 record
(1 hour), and the latter the true hourly data. Each of the three charts uses the same
parameters to plot data, but each represents different data and values that are saved
to the JSON files by the neural network script.

1 <script>
> var chartData = unpack()
function unpack() {

4 var jsonD = {};

5 // Load relevant JSON files
6 $.ajax ({

7 url: "updating.json",

8 dataType: "json",

9 type: "get",
10 async: false,

11 success: function(json){
12 jsonD = json;
13 }

14 1
15 var chartData = []
16 for (var i = 0; i
17 {

18 // Extract Values at postions and create array for plotting
19 chartData . push ({
20 index: jsonD[i]["index"],
21 predict: jsonD[i]["yhat inverse"],

< Object.keys(jsonD).length; i++)

I6)

})’
}

return chartData;

b5

// JSON attributes and parameters for plotting the array generated
var chart = AmCharts. makeChart (" chartdiv", {

"type": "serial",
"theme": "dark",
"legend": {

"useGraphSettings": true
}
"dataProvider": chartData ,
"synchronizeGrid":true,
"valueAxes": [{
Midn:"y1"
"axisColor": "#FF6600",
"axisThickness": 2,
"axisAlpha": 1,
"position": "left"

b A

llid" . HV2N ,

N

// other JSON attribute parameters for defining a chart

</script>

Listing 19: Chart creation with AJAX request

true: jsonD|[i|["testY inverse"]

76

10.7.2 Final Interface

As briefly described throughout this section, the final interface consists of three graphs
and two tables. The graphs display relevant data on predictions over true hour price,
performance metrics and prediction over true price from the start of execution of the
forecasting function. Tables showing the next hour predicted price alongside current
hour prices and sentiment, with time created and suggested market action based on
the hard-coded difference threshold of 2.5%, and another table displaying the average
performance metrics of the given run of the network model. The interface shown is
that of the network model with sentiment embedded, but the model without senti-
ment embedded is exactly the same, hosted on separate websites - cryptosky.me and
nosent.cryptosky.me.

7

cryptosky.me
nosent.cryptosky.me

TRUE AND PREDICT FROM START OF TRAINING TO CURRENT

PREDICTIONS

CREATED AT NEXT HOUR PRICE ‘CURRENT PRICE ‘CURRENT SENTIMENT PREDICTED ACTION

MODEL AND PREDICTION METRICS

MAE

MODEL AND PREDICTION METRICS - GRAPH

TRUE AND PREDICT FROM START OF PREDICTIONS

Figure 12: Final Interface - |cryptosky. me and nosent. cryptosky. me

78

cryptosky.me
nosent.cryptosky.me

11 Testing Metrics and Accuracy

This section discusses the performance metrics used to validate the network, any ad-
ditional validation step during training, speed of execution of the two networks, and
outlines what these mean regarding the performance of the network.

Due to that the project is primarily an investigation of the use of discussed tools on how
these would be used for forecasting the price of the next hour of Bitcoin, based on both
historic and live price, and sentiment data, testing is focused around the accuracy of the
predicted hourly values and the model generated by the LSTM network. A discussion
of the accuracy of the predicted values is discussed in the 'Discussion of Results’ section
along with comparing both models - with and without sentiment embedded to fulfil
the problem statement.

11.1 Integration Testing

Integration testing occurred throughout the development of this system, the goal of this
type of testing is the ensure that each of the functions within the system was working
with previous functions that it either uses or provides functionality too and to conform
to an agile methodology when possible. If and when a function was completed, prior to
moving on to the development of another, the function was tested with real and fake
data - depending on the functionality the function performed. This was to ensure that
the function was either being access or used other functions correctly.

An example of when such testing occurred, though not documented, between compo-
nents is that of the FilterSpam class in the tweet collector script. This was a signifi-
cant class to test the operation of and was due to both the multiple calling of functions
within the class from throughout the tweet collector script and from the functions of
the class to individual functions in the spam__ filter script. For a precise example, using
Listing 9 and function testTweet, this function is only ever called upon receiving data
from the Tweepy streamer (Listing 4), however, this function calls two other functions
of processTweets (Listing 8) and classify (Listing 11) from the spam_ filter script (de-
tailed in the implementation section). Not only do each of these functions need to be
tested that the correct data is being processed and returned, but the entire function
is reliant on the classifier being already trained for classification which is handled by
the function in the class, whom of which also call other functions from the spam_ filter
script (Listing 10).

This example was one of the most complex classes and set of functions to test as there
was a lot of jumping back and forth and sequencing needed to ensure that the classifier
was trained correctly and that streamed tweets are classified correctly. Similar testing
occurred with all other functions and classes of the system at each stage of development.

79

11.2 Accuracy of Model & Results

Due to the type of neural network used and its use case, suitable regression metrics
were chosen to identify the accuracy of the model used for forecasting the next hour
price of Bitcoin. As mentiod in the implementation section, subsection Training and
Testing Model the metrics used are as follows:

RMSE | MSE | MAE | MAPE | Loss
100 £20 [0.3 £0.1 3.0+ 0.5 | 10% + 5% | 0.3 £ 0.1

Per execution of the neural network - with sentiment embedded

RMSE | MSE | MAE | MAPE | Loss
100 £25 | 0.3+ 0.15 | 3.0 £ 0.5 | 10% £ 6% | 0.3 £ 0.15

Per execution of the neural network - without sentiment embedded

11.2.1 Results Discussion

The results, although exceptionally close for each network (with and without senti-
ment embedded), averaged over 50 runs of each network show that the model with
sentiment embedded generally performs better than the model without sentiment used
in predictions. The model with sentiment embedded has an average RMSE of 100 give
or take 20 per each run which shows that on average the predictions are closer to the
regression line than the model without sentiment. Additionally, the mean absolute
percentage error discrepancy is less for the model with sentiment embedded than the
model without. This, however, does not provide a clear distinction between the two
models that is needed to justify what is outlined in the problem statement.

A clearer distinction between the performance of the two models is when the metics
are showing the two model performing almost as accurate, as in the RMSE of both has
been 105 and 106, the closest it has been on the 50 runs during testing. This also saw
the mean absolute percentage error have only 0.2% difference between the two models.
Unfortunatly, the difference between the two models can only be seen when a portion
of predictions are made. The models were left to run for 48 hours each which returned
48 predictions each of which could be compared to the next hour price.

80

Created at Prediction | Current Price | Current Sentiment
2019-04-22 6pm 5308.333 5318.4119 0.24312407
2019-04-22 7pm 5309.2754 5373.438 0.21355466
2019-04-22 8pm 5310.557 5413.161 0.28671014
2019-04-22 9pm 5317.3716 5375.6269 0.22499429
2019-04-22 10pm | 5337.3213 5373.607 0.25170501
2019-04-22 11pm 5370.356 5386.581 0.26898607
2019-04-23 12am | 5386.6113 5392.774 0.22517575
2019-04-23 lam 5386.9487 5387.8319 0.27451984
2019-04-23 2am 5379.05 5380.0669 0.23613823
2019-04-23 3am 5384.681 5386.57 0.24832858
2019-04-23 4am 5388.9434 5399.268 0.25803705
2019-04-23 5am 5386.557 5429.906 0.25804942
2019-04-23 6am 5385.1934 5510.472 0.25270584
2019-04-23 7am 5389.97 5533.843 0.34432973
2019-04-23 8am 5406.9917 5531.68 0.34782233
2019-04-23 9am 5449.7676 5534.522 0.27746379

15 records of predictions - with sentiment embedded

Created at Prediction | Current Price
2019-04-22 6pm 5373.431 5318.4119
2019-04-22 7pm 5381.814 5373.438
2019-04-22 8pm 5381.952 5413.161
2019-04-22 9pm 5388.013 5375.6269
2019-04-22 10pm 5410 5373.607
2019-04-22 11pm 5442.346 5386.581
2019-04-23 12am 5457.733 5392.774
2019-04-23 lam 5460.422 5387.8319
2019-04-23 2am 5451.898 5380.0669
2019-04-23 3am 5457.16 5386.57
2019-04-23 4am 5461.436 5399.268
2019-04-23 Sam 5459.212 5429.906
2019-04-23 6am 5457.895 5510.472
2019-04-23 7am 5461.916 5533.843
2019-04-23 8am 5479.55 5531.68
2019-04-23 9am 5523.663 5534.522

15 records of predictions - without sentiment embedded

81

Figure 13: cryptosky. me - model with sentiment embedded

Figure 14: mosent. cryptosky. me - model without sentiment embedded

On visual inspection, after both models had made 48 predictions, See above tables
showing 10 records as an example, it can be seen that the model with the sentiment
embedded both follows the current price more closely and is not as conservative in
its predictions as the model without sentiment. How conservative the model without
sentiment embedded is can be seen in the five values between, 1 am to 5 am, where it
attempts to correct itself to the actual value but slow to do so, then predicts a higher
price for the next hour. At a point, the predicted value somewhat resembles that of the
actual price but only due to the exact price rising substantially. This model through
the data shown shows that it takes much longer to change the prediction to the actual
real value of the next hour compared to the model with the embedded sentiment. Also,
neither model handles spikes in prices very well which is more noticeable with the model
with sentiment as it follows the exact price more closely.

82

cryptosky.me
nosent.cryptosky.me

Another factor that can be identified by the results shown above is that the model with
the sentiment embedded in with the price data doesn’t react adequately for when the
sentiment spikes - regardless of a price spike. This could suggest that the data has not
been predicted using enough data of both price and sentiment, due to only training
on the last five live prices and sentiment and not 1000 samples to match the batch
size the model was trained on during model creation. An improvement to the model
could be made during predictions of the next hour price where it continuously predicts
on the data available until it has 1000 records, then only predicts using the last 1000
records of live data. At this point, 1000 hours into predictions, said predictions might
become more accurate than what is presented for evaluation at the time of writing due
to matching the training batch sample size of the trained model of the network.

Another result that can be drawn from the data presented, separate from the models’
performance, is that of how sentiment affects the following hours’ price. It can be
seen in a number of the records presented that the sentiment occasionally spikes, at 1
am spikes to 0.2745198/ from the previous hour of 0.22517575, and the spike is not
represented in the following hours’ price. This also occurs on a previous hour at 8 pm
which saw a spike of sentiment, a 0.07405548 difference from the previous hour but
saw the price drop almost $40. This could indicate that the sentiment of the hours
does not directly affect the next hours’ price but affects it over possibly several hours,
and also shows that there is not a direct correlation in sentiment spikes to price spikes.

11.2.2 Execution Speeds

Each of the models are trained and validated using both generated training and testing
dataset over 200 epochs and a batch size of 1000 on 11000 records total of data, within
minutes. The network with sentiment embedded take marginly longer to create the
prediction model.

Network ‘ Speed
With Sentiment 3:15 £ 0:20 secs
Without Sentiment | 2:50 4 0:20 secs

Speed of executions of each network, averaged over the 50 testing runs

83

12 Discussion: Contribution and Reflection

The testing performed and the results obtained show significant difference using sen-
timent alongside price can have on the forecasting of the next hours’ price of Bitcoin,
visually shown in figures 13 € 14. Results have also identified that both models do
not handle spikes in both sentiment or price adequately, as seen in figures 13 € 14 it
usually takes another hour for the spike to be reflected in the predictions, longer so for
the model without sentiment embedded. Also stated in the discussion of the results,
it can be seen that the sentiment of the hour does not directly or immediately affect
the next hours’ actual price, even when there is a spike or drop in sentiment or price.
As stated this could suggest that sentiment affects the price over a broader time range
such as a few hours, and also shows that there is no direct correlation between, in the
data presented, sentiment spikes to price spikes.

With testing and results discussed it is important to discuss some of the general is-
sues that occurred during the development that contribute to the results shown and
identifying correlations to solve the problem statement.

One issue is that of deployment and the need to have the system continuously running
to make hourly predictions and to satisfy the problem statement of providing a system
to aid in investor decision making of the market. Additionally, the system needs to
continuously run to meet the batch file size, which will aid in determining if predicting
on 1000 records shows if predictions become more accurate on each iteration after 1000
records have been obtained, as mentioned and described in the discussion of the results
section. The current solution that has been used to during development is to run the
system for training purposes on a work laptop while the front-end is hosted on an
external cloud server. On each hour a prediction is made a bash script watches the
relevant files that contain predictions, performance metrics and correct over predicted
values for graph plotting for changes, and is then SCP’d (Secure Connection Protocol)
to the relative path on the cloud server for the front-end to access and display to
the stakeholders. Due to the cost and computational power needed, and system not
working when initially attempting to deploy it to the server, it was impractical to host
it on an external server for the given time frame needed for completion of this project.
A proper solution would see both systems deployed at a production level with both
fully operational on the external server.

Another issue, relating to the issue just described is that on system execution being
halted. The issue is that during the period in which the system is not running live
prices and sentiment are not being collected, ignoring that predictions are not made.
When the system is brought back online it will be missing the now "historical’ data for
that given period when it was not running and collecting data; thus this data has to
be manually entered. Due to the system not being deployed in 'production” and was
ran from a personal laptop this issue frequently occurred, which would be mitigated
if it was deployed to an external server. If the system were to crash on a production

84

server, there are several try-catch statements throughout the system that will restart
the processes if this issue occurs.

12.1 Limitations

The limitations of the system can be quite clear, as described extensively already with
both models performances. However, it is important to identify which points in the
technical specifications the final developed system did not meet.

Looking back at the technical specification laid out at the start of this project, there is
only one point that this system does not meet. It is that of ’both prediction system and
interface, should be deployed to a server due to the need to be constantly running’. As
already discussed in the discussion section prior to this section, it was both unfeasible
for several factors and to get fully operational. This was due to the difference in
execution speeds of the laptop used compared to the server intended for deployment,
timings in which the model was planned to train on did not match or work on the
deployment server thus data collection and predictions made became increasingly later
until an hour was left out. Additionally, a limitation that was presented was that of
the server intended for deployment was in UTC and not on a GMT timezone in which
the development laptop was on which further affected the timings of forecasting and
system execution.

Additionally, limitations would be identified if future improvements were to be imple-
mented in the system. Although these improvements are outlined below in the future
improvements section, one such one that would be suitable to discuss initially as an
example would be that of comparing how tailoring the VADER lexicon with domain
specific language. Language such as bullish, bearish and shorting terms with identified
and relevant weighted sentiment values would have on the outcome of the polarity
classification of the VADER analyser, and how this also could more significantly affect
the next hour forecasting of Bitcoin price. Due to the VADER sentiment analyser
lexicon being open-source these additions would be reasonably easy to implement, the
real task, however, would be on how to identify the suitable weighted sentiment value
for the specific words added, which in itself could be an entirely new project.

Lastly, a limitation that could be identified and is also discussed in the results section
above is that of the performance metrics not showing a clear distinction between the two
network models. This limitation could be overcome by using more suitable explanative
metrics, rather than relying on a more visual inspection, such as:

e Adjusted R? statistic - Shows how well the selected independant variables of the
model explain the variability of the dependant variables, and shows how well the
terms fit a regression line [39).

e Mean Bias Error (MBE) - Is the Mean Absolute Error (MAE), but is calculated if
the absolute value isn’t taken (the signs of the errors are not removed) the MAE

85

becomes the mean biased error. The MBE is intended to measure the average
model bias and can convey more useful information that the MAE, but should
be interpreted with caution due to the positive and negative error cancelling out.
150]

By calculating these metrics could aid in distinguishing a correlation between the mod-
els based on metrics rather than on visual analysis.

12.2 Reflection

Developing this project has opened my eyes up to the development of exciting topics
that have been used to make the solution of this project real. It has taught me the
basics of natural language pre-processing the steps involved to form the data correctly
for classification, both how this would be used for a spam classification algorithm like
the one implemented and for a traditional machine learning based sentiment analyser.
On top of this, it has allowed me to discover other methods for sentiment analysis such
as lexicon-based approaches such as VADER and how customisable to a topic domain
they are when the lexicon is either altered or added to - along with how the weighted
sentiments are formed (based on knowledge from the VADER paper [13]).

This project has taught me the basics of how both neural networks, recurrent neural
networks and LSTM recurrent neural networks function and how they compare to each
other in terms of performance for a particular task of time-series forecasting and their
suitability for this task - quantified as knowledge from relevant sources used within the
literature review. Known issues of each network such as exploding gradients and how an
LSTM network overcomes these standard RNN issues. An in-depth understanding of
the low-level functionality of an LSTM network, optimisers available - use, suitability
and operation, regularisation techniques and dropout for minimising overfitting and
underfitting of the network with the training datasets.

It has taught me how the classical (multinomial) naive Bayes probability model can
be used for classification for spam or ham (wanted) data, and how the underlying
maths and algorithm works - due to hand-coding the algorithm from scratch. Through
the use of both the Bag Of Words algorithm for term-frequency identification: how it
builds upon the base probability model of the Bayes algorithm. How TF-IDF (Term
Frequency-Inverse Document Frequency) further builds upon this to both identify the
amount of occurrence of words in a given text by assigning a weight, but also how it
uses this to identify commonly used words that are of no relevance to classification.
Further how the Addictive Smoothing method aids in dealing with words that have
not been identified during training, due to not being initially presented in the training
data.

Development of this project has given me a further understanding of time management
and priorities, in the sense of what needs to focused on during development prior to

86

other features being coded or implemented. An excellent example of where priorities
had changed can be seen from the original PID form, Appendiz B, in which the solu-
tion to this project changed from focusing on the front-end application to focusing on
the back-end system. This was due to a few factors that have already been identified
in the Solution approach section. Where both stakeholders, I the developer and the
supervisor of the project concluded that the creation of a front-end application, with
a basic back-end for predictions, would not be a satisfactory solution, and more focus
should be invested into the price predictions of Bitcoin. Another point where time
management had to be considered was when implementing the Naive Bayes Classifier
for spam filtering. Time management was not considered during its development and
saw the feature go out-of-scope for what was initially wanted - the initial idea was to
use the scikit-learns in-built Multinomial Naive Bayes classifier for spam classification.
However, tutorials were found on top of the papers used for describing the algorithm
during the literature review, which further described how to implement such an algo-
rithm from scratch. Thus this was undertaken and leading to arguably time wasted
coded the classification model rather than spending more time on coding the neural
network. Arguably in a sense, as detailed in the previous paragraph, it taught me a
great deal of how the algorithm works, and it’s limitations.

Furthermore, it has allowed me to form a better knowledge base and understanding of
the Python language and data mining techniques used for the languages, to manipulate
and used data for a required purpose, and has taught me relevant useful performance
metrics for identifying the performance of a neural network and what the results of the
metrics represent.

Lastly, if I were to conduct this project again, I would create a new lexicon that is
explicitly tailored to the type of language used in the stock market as it has a unique
language, and how suitable sentiment weights would be assigned to the new words.
I would also adjust and alter both the batch size and epoch amount to identify how
this affects the training and accuracy of predictions for both networks - with and
without sentiment. I would also create a more refined and developed user interface
for production level, which will more appropriately satisty the problem of the public
not having a system available to aid in investment decision making. The current
interface, although providing relevant and useful information which would still be the
information displayed to the stakeholders and users, the interface could be significantly
improved to meet a production level solution. More arguably I would build upon
what this project has become and implement the future improvements laid out in the
fucute improvements section below. Most notably a future improvement that would
be implemented would be that of additional performance metrics such as R? statistic
and Mean Bias error along with K-fold Cross-Validation (which was not implemented
due to time constraints and not knowing how to implement this for continuous data).
This will be used to justify further both the performance of the two networks with
validation of the model and to accurately identify a correlation between how sentiment
affect the price of bitcoin and the accuracy of the network with it embedded, rather

87

than relying on visual inspected as used for the majority of the results discussion.

13 Social, Legal and Ethical Issues

During the creation of the Project Initiation Document, with the intended solution, no
foreseeable Social, Legal or Ethical Issues were identified. As the concept and solution
changed considerably both before proper development and also during development,
no other Social, Legal or Ethical Issues presented themselves. There was however
a developer agreement policy that was required to be agreed with prior being able
to access the Twitter API, for both historical tweets and with use with the Tweepy
Python package. This document outlined various limitations of the use of the API
such as rate limits and security personal security of generated API keys, but nothing
significant that affected the development of the project apart from the mentioned
section of reverse engineering the Twitter API, in which this project had not set out
to do. As tweets posted on Twitter are public and free to access by anyone there are
no personal information issues that could be presented; thus this agreement was no a
Social, Legal or Ethical issue. Twitter API - Developer Agreement and Policy [51]

88

14 Conclusion and Future Improvements

14.1 Conclusion

As stated, the projects focus and solution changed considerably from the original
Project Initiation Document which stated in section 2.2 of the document that, the
main objective was to "produce a thin web client that provides a dashboard, that
provides tangible and useful information to users such as; current price" - of a cryp-
tocurrency - "exchange rate, network hashrates and historical price data". "It will
also display statistics about sentiment analysis conducted on social media about the
currency" with "graphical predictions on what the price may be, in a given time". As
from the extracts, the initial objectives of the project were broad and also vague. As
this suggests that the focus of the project will be that of creating a thin client dash-
board which was no longer the focus of the project, and "about the cryptocurrency”,
indicating sentiment analysis and price predictions would be conducted on multiple
currencies which were an extremely board estimations of workload. It does, however,
show that the initial thought process of performing sentiment analysis and price pre-
dictions occurred during initial stages of this project, but ultimately change through
development to focus on how said sentiment of a cryptocurrency, Bitcoin, extracted
from social media could be used in aiding in the prediction of future price.

As for reference to the projects problem statement and solution approach, "This project
will focus on the investigation of these technologies and tools", (sentiment analysers,
machine learning algorithms and neural networks), "to justify whether it is feasible to
predict the price of BTC based on historical price and the sentiment gathered from
Twitter". The solution outlined in the solution approach stated that the solution is
"to create a system mainly consisting of; a frontend application that will display plot-
ted; predicted and true, performance metric data to the user as a clear and concise
form". A back-end prediction system of "various subsystems responsible for data col-
lection, filtering, data pre-processing, sentiment analysis, network training, validation
and training, and future price predictions".

The end result followed suitably with would was outlined in both the problem state-
ment and solution approach, and meet all but one point in the technical specification
previously discussed in the reflection - where there were issues with deploying the
back-end responsible for price forecasting to the external cloud server and getting it
operational. A front-end application was also created, although basic, served its pur-
pose of presenting the required data to users in a clear format. The back-end also
suitably performed all the tasks set out for it such as; data collection from the Twitter
API, sentiment analysis using VADER, and predicting the next hour price of Bitcoin.

The majority of the focus was invested into implementing the back-end prediction
solution, although fully implemented as intended some time was wasted hand-coding
from scratch the Naive Bayes classifier. This did provide valuable information on

89

exactly how the algorithm worked, its limitations and how additional techniques and
methods overcome these but was ultimately wasted time due to an already used Python
package, Scikit-Learn, having multiple in-built Naive Bayes models to choose from. If
used, would have reduced time coding which could have been used elsewhere on the
project. For example during testing, to implement K-fold Cross-validation, the R?
statistic or produce the Mean Bias Error, and in turn possibly aid in identifying a
correlation from the metrics between the two models, with and without sentiment,
rather than relying on the metrics used which did not show much and visual inspection
of prediction results.

To conclude, the system that has been developed to meet the requirements set out for
this project has been developed to the highest possible standard in the time frame that
was given for this project. Moreover, from the discussion of results, it can be believed
that the system works well and predicts the next hour price of Bitcoin appropriately
given the data provided. The user interface provides the necessary information, al-
though not pretty, to the possible stakeholders in a clear and concise which is what
was intended for the interface.

14.2 Future Improvements

as such comparing recurrent neural network models, implementation and the affect of
regularisation techniques, use of different optimisers would have on the network, how
use of ngrams could be used to improve language detection, comparing hand-coded
naive bayes model to that of scikit-learns in built classifiers, alterations and additions
to the VADER lexicon to tailor it with domain specific language and relevant weighted
sentiment values

Interesting what would a days prediction would show due to sentiment not directly
affecting the next hour price

Shifting the predicted data by and hour and sequencing over previous data - will also
allow proper use of look-back windows

Another could be to predict the hour of sentiment and create a threshold for it.
Identify whether or not use of ngrams improved accuracy of spam classification
Identify whether use lemmatisation would change how spam classification occured
Look into use of other ngrams for use with language detection

Compare Scikit-learns in-built naive bayes algorithms and other variations performance
for spam filtering against hand-coded version

Look into adding to the VADER lexicon for increasing performance and accuracy for
topic domain of stock market language and what sentiment would be assigned to words

IMPLEMENT AND IDENTIFY R2 stat and Mean Bias ERROR

90

(R2 and mean bias error would be suitable metrics to show how conservative the model
is and the difference between the predicted and true price it is) - never got to implement

mean bias Error

k-fold cross validation was attempted, but issues with continuous data How would this
work what will it show or validate?

How would changing epoch and batch size affect performance?

Use a different charting system as the plotted lines seem to jump around and skew
accuracy

91

References

1]

2l

3]

4]

[5]

6]

7]

8]

19]

[10]

V. S. Pagolu, K. N. Reddy, G. Panda, and B. Majhi, “Sentiment analysis of twit-
ter data for predicting stock market movements,” in 2016 international conference
on signal processing, communication, power and embedded system (SCOPES),
IEEE, 2016, pp. 1345-1350. [Online|. Available: https://arxiv.org/pdf/1610.
09225 . pdf.

N. Indera, I. Yassin, A. Zabidi, and Z. Rizman, “Non-linear autoregressive with
exogeneous input (narx) bitcoin price prediction model using pso-optimized pa-
rameters and moving average technical indicators,” in Journal of Fundamental
and Applied Sciences. Vol.35, No.35, University of El Oued, 2017, pp. 791-808.
[Online|. Available: https://www.ajol . info/index . php/ jfas/article/
viewFile/165614/155073.

J. L. Evita Stenqvist, “Predicting bitcoin price fluctuation with twitter sentiment
analysis,” Diva, 2017. [Online|. Available: http: //www . diva - portal . org/
smash/get/diva2:1110776/FULLTEXTO1. pdf.

O. G. Yalcin, “Predict tomorrows bitcoin (btc) price with recurrent neural net-
works,” Towards Data Science, 2018. [Online|. Available: https://towardsdatasc
com / using - recurrent - neural - networks - to - predict - bitcoin - btc -
prices-c4ff70f9f3e4.

ISO, “Quality management principles:is09000-is9001,” ISO, 2015. [Online|. Avail-
able: https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/
en/pub100080. pdf.

Intel-Corporation, “Stock predictions through news sentiment analysis,” Code
Project, 2017. [Online|. Available: https://www.codeproject.com/Articles/
1201444 /Stock-Predictions-through-News-Sentiment-Analysis.

S. C. Sean McNally Jason Roche, “Predicting the price of bitcoin using ma-
chine learning,” in 2018 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), IEEE, 2018, pp. 344-347. |On-
line|. Available: https://ieeexplore.ieee.org/abstract/document/8374483.

Twitter, “Search tweets,” Twitter Developers, 2018. [Online|. Available: https:
//developer.twitter.com/en/docs/tweets/search/overview.

——, “Consuming streaming data,” Twitter Developers, 2018. [Online|. Avail-
able: https://developer . twitter.com/en/docs/tutorials/consuming -
streaming-data.html.

J. Roesslein, “Streaming with tweepy,” Tweepy, 2009. [Online|. Available: http:
//docs.tweepy.org/en/v3.4.0/streaming_how_to.html.

92

sience.

https://arxiv.org/pdf/1610.09225.pdf
https://arxiv.org/pdf/1610.09225.pdf
https://www.ajol.info/index.php/jfas/article/viewFile/165614/155073
https://www.ajol.info/index.php/jfas/article/viewFile/165614/155073
http://www.diva-portal.org/smash/get/diva2:1110776/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1110776/FULLTEXT01.pdf
https://towardsdatascience.com/using-recurrent-neural-networks-to-predict-bitcoin-btc-prices-c4ff70f9f3e4
https://towardsdatascience.com/using-recurrent-neural-networks-to-predict-bitcoin-btc-prices-c4ff70f9f3e4
https://towardsdatascience.com/using-recurrent-neural-networks-to-predict-bitcoin-btc-prices-c4ff70f9f3e4
https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100080.pdf
https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100080.pdf
https://www.codeproject.com/Articles/1201444/Stock-Predictions-through-News-Sentiment-Analysis
https://www.codeproject.com/Articles/1201444/Stock-Predictions-through-News-Sentiment-Analysis
https://ieeexplore.ieee.org/abstract/document/8374483
https://developer.twitter.com/en/docs/tweets/search/overview
https://developer.twitter.com/en/docs/tweets/search/overview
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html
http://docs.tweepy.org/en/v3.4.0/streaming_how_to.html
http://docs.tweepy.org/en/v3.4.0/streaming_how_to.html

[11] S. N. Mehrnoush Shamsfard, “Using linked data for polarity classification of
patients experiences,” in Journal of Biomedical Informatics, Elsevier, 2015, pp. 6—
19. [Online|. Available: https://www.sciencedirect.com/science/article/
pii/S1532046415001276.

[12] L. P. T. Chedia Dhaoui Cynthia M. Webster, “Social media sentiment analy-
sis: Lexicon versus machine learning,” in Journal of Consumer Marketing, Vol-
ume 34. Issue 6, Emerald Insight, 2017. |Online|. Available: https : / / www .
emeraldinsight.com/doi/pdfplus/10.1108/JCM-03-2017-2141.

[13] C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for sentiment
analysis of social media text,” in Eighth International Conference on Weblogs and
Social Media (ICWSM-14), Ann Arbor, MI, 2014. [Online|. Available: https://
www.aaal.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8109/8122.

[14] W. Kenton, “Wisdom of crowds,” Investopedia, 2018. [Online|. Available: https:
//www.investopedia.com/terms/w/wisdom-crowds.asp.

[15] Skymind, “A beginner’s guide to neural networks and deep learning,” in A.IL
Wiki, Skymind, 2018. [Online|. Available: https://skymind.ai/wiki/neural-
network.

[16] J. DeMuro, “What is a neural network,” in World of tech, techradar, 2018. [On-
line|]. Available: https://www.techradar.com/uk/news/what-is-a-neural-
network.

[17] F. Bach, “Supervised dictionary learning,” in Advances in neural information
processing systems, NIPS Proceedings, 2009, pp. 1033-1040. [Online|. Available:
http://papers.nips.cc/paper/3448-supervised-dictionary-learning.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal repre-
sentations by error propagation,” California Univ San Diego La Jolla Inst for
Cognitive Science, 1985. [Online|. Available: https://apps.dtic.mil/docs/
citations/ADA164453.

[19] Skymind, “A beginner’s guide to lstms and recurrent neural networks,” in A.I.
Wiki, Skymind, 2018. [Online|. Available: https://skymind.ai/wiki/lstm.

[20] N. Donges, “Recurrent neural networks and Istm,” Towards Data Science, 2018.
[Online|. Available: https: //towardsdatascience . com/recurrent - neural -
networks-and-1stm-4b601dd822ab.

[21] P. Jason Brownlee, “A gentle introduction to exploding gradients in neural net-
works,” Machine Larning Mastery, 2017. [Online|. Available: https://machinelearningmastery.
com/exploding-gradients-in-neural-networks/.

[22] S. D. S. Team, “Recurrent neural networks (rnn) - the vanishing gradient prob-
lem,” Super Data Science, 2018. [Online|. Available: https://www.superdatascience.
com/blogs/recurrent - neural - networks - rnn- the - vanishing - gradient -
problem.

93

https://www.sciencedirect.com/science/article/pii/S1532046415001276
https://www.sciencedirect.com/science/article/pii/S1532046415001276
https://www.emeraldinsight.com/doi/pdfplus/10.1108/JCM-03-2017-2141
https://www.emeraldinsight.com/doi/pdfplus/10.1108/JCM-03-2017-2141
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8109/8122
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8109/8122
https://www.investopedia.com/terms/w/wisdom-crowds.asp
https://www.investopedia.com/terms/w/wisdom-crowds.asp
https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/neural-network
https://www.techradar.com/uk/news/what-is-a-neural-network
https://www.techradar.com/uk/news/what-is-a-neural-network
http://papers.nips.cc/paper/3448-supervised-dictionary-learning
https://apps.dtic.mil/docs/citations/ADA164453
https://apps.dtic.mil/docs/citations/ADA164453
https://skymind.ai/wiki/lstm
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem
https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem
https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem

23]

[24]

[25]

[26]

27]

28]

29]

[30]

[31]

32]

[33]

[34]

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” in Neural compu-
tation, Volume 9. 8 MIT Press, 1997, pp. 1735-1780. [Online|. Available: https:
//www.bioinf . jku.at/publications/older/2604.pdf.

S. Yan, “Understanding Istm and its diagrams,” Medium, Mar 13, 2016. [Online|.
Available: https://medium. com/mlreview/understanding-lstm-and-its-
diagrams-37e2f46£1714,

C. Olah, “Understanding lstm networks,” 2015. [Online|. Available: https: //
colah.github.io/posts/2015-08-Understanding-LSTMs.

R. Kompella, “Using Istms to forecast time-series,” Towards Data Science, 2018.
[Online|. Available: https ://towardsdatascience . com/using- lstms - to -
forecast-time-series-4ab688386b1f]

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine
learning,” in 12th Symposium on Operating Systems Design and Implementation
16), 2016, pp. 265-283. [Online|. Available: https://www.usenix.org/system/
files/conference/osdil6/o0sdil6-abadi.pdf.

Stanford, “Optimization: Stochastic gradient descent,” in UFLDL Tutorial. |On-
line|]. Available: http://deeplearning.stanford.edu/tutorial/supervised/
OptimizationStochasticGradientDescent.

R. Mitra, “What are differences between update rules like adadelta, rmsprop,
adagrad, and adam,” Quora, 2016. [Online|. Available: https://www.quora.com/
What-are-differences-between-update-rules-1like-AdaDelta-RMSProp-
AdaGrad-and-AdaM.

M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with loga-
rithmic regret bounds,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70, JMLR.org, 2017, pp. 2545-2553. [Online|. Avail-
able: https://arxiv.org/pdf/1706.05507 . pdf.

R. Khandelwal, “Overview of different optimizers for neural networks,” Medium,
2019. [Online]. Available: https://medium. com/datadriveninvestor/overview
of-different-optimizers-for-neural-networks-e0ed119440c3|

J. L. B. Diederik P. Kingma, “Adam: A method for stochastic optimization,”
in arXiv preprint arXiv:1412.6980, arXiv, 2014. [Online|. Available: https://
arxiv.org/pdf/1412.6980.pdf.

M. L. Al “Neural network bias: Bias neuron, overfitting and underfitting,” Miss-
ing Link Al [Online|. Available: https://missinglink.ai/guides/neural -
network - concepts / neural - network - bias - bias - neuron - overfitting -
underfitting/.

K. Team, “Dropout,” Keras. [Online|. Available: https://keras.io/layers/
core/#dropout.

94

https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f
https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent
https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM
https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM
https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM
https://arxiv.org/pdf/1706.05507.pdf
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://missinglink.ai/guides/neural-network-concepts/neural-network-bias-bias-neuron-overfitting-underfitting/
https://missinglink.ai/guides/neural-network-concepts/neural-network-bias-bias-neuron-overfitting-underfitting/
https://missinglink.ai/guides/neural-network-concepts/neural-network-bias-bias-neuron-overfitting-underfitting/
https://keras.io/layers/core/#dropout
https://keras.io/layers/core/#dropout

[35] A. Budhiraja, “Dropout in (deep) machine learning,” Medium, Dec 15, 2016.
[Online|. Available: https://medium. com/@amarbudhiraja/https-medium-
com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-
machine-learning-74334da4bfch.

[36] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001
workshop on empirical methods in artificial intelligence, vol. 3, 2001, pp. 41-46.
[Online|. Available: https://www.cc.gatech.edu/ isbell/reading/papers/
Rish.pdf.

[37] Skymind, “A beginner’s guide to bag of words and tf-idf,” in A.I Wiki, Skymind,
2018. [Online|. Available: https://skymind.ai/wiki/bagofwords-tf-idf.

[38] T. Karmali, “Spam classifier in python from scratch,” Towards Data Science,
Aug 2, 2017. [Online|. Available: https://towardsdatascience . com/ spam-
classifier-in-python-from-scratch-27a98ddd8e73.

[39] A. Swalin, “Choosing the right metric for evaluating machine learning models,”
Medium, Apr 7, 2018. [Online|. Available: https://medium. com/usf - msds/
choosing - the-right -metric - for-machine - learning - models - part-1-
a99d7d7414e4.

[40] M. Binieli, “Machine learning: An introduction to mean squared error and re-
gression lines,” Medium, Oct 16, 2018. [Online|. Available: https://medium.
freecodecamp . org/machine-learning-mean-squared-error-regression-
line-c7dde9a26b93.

[41] Stephanie, “Mean absolute percentage error (mape),” Statistics HowTo, Sep 8,
2017. |Online]. Available: https://www.statisticshowto.datasciencecentral.
com/mean-absolute-percentage-error-mape/.

[42] J. Roesslein, “Tweepy documentation,” 2009. [Online|. Available: http://docs.
tweepy.org/en/v3.5.0/.

[43] S. Deoras, “Tensorflow vs. theano: What do researchers prefer as an artificial
intelligence framework,” Analytics India, 2017. [Online|. Available: https: //
www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-
artificial-intelligence-framework.

[44] bitcoincharts, Bitcoin Charts. [Online|. Available: http://api.bitcoincharts.
com/v1/csv/.

[45] A. Nolla, “Detecting text language with python and nltk,” Alejandro Nolla Blog.
[Online|. Available: http://blog.alejandronolla.com/2013/05/15/detecting-
text-language-with-python-and-nltk/.

[46] P. Cryptography, “A tutorial on automatic language identification - ngram based,”
Practical Cryptography. [Online|. Available: http://practicalcryptography.
com/miscellaneous/machine - learning/tutorial - automatic - language -
identification-ngram-b/.

95

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf
https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf
https://skymind.ai/wiki/bagofwords-tf-idf
https://towardsdatascience.com/spam-classifier-in-python-from-scratch-27a98ddd8e73
https://towardsdatascience.com/spam-classifier-in-python-from-scratch-27a98ddd8e73
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.freecodecamp.org/machine-learning-mean-squared-error-regression-line-c7dde9a26b93
https://medium.freecodecamp.org/machine-learning-mean-squared-error-regression-line-c7dde9a26b93
https://medium.freecodecamp.org/machine-learning-mean-squared-error-regression-line-c7dde9a26b93
https://www.statisticshowto.datasciencecentral.com/mean-absolute-percentage-error-mape/
https://www.statisticshowto.datasciencecentral.com/mean-absolute-percentage-error-mape/
http://docs.tweepy.org/en/v3.5.0/
http://docs.tweepy.org/en/v3.5.0/
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework
https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework
http://api.bitcoincharts.com/v1/csv/
http://api.bitcoincharts.com/v1/csv/
http://blog.alejandronolla.com/2013/05/15/detecting-text-language-with-python-and-nltk/
http://blog.alejandronolla.com/2013/05/15/detecting-text-language-with-python-and-nltk/
http://practicalcryptography.com/miscellaneous/machine-learning/tutorial-automatic-language-identification-ngram-b/
http://practicalcryptography.com/miscellaneous/machine-learning/tutorial-automatic-language-identification-ngram-b/
http://practicalcryptography.com/miscellaneous/machine-learning/tutorial-automatic-language-identification-ngram-b/

[47]

48]
[49]

[50]

[51]

T. Risueno, “What is the difference between stemming and lemmatization,” Bi-
text, Feb 26, 2018. [Online|. Available: https://blog.bitext.com/what-is-
the-difference-between-stemming-and-lemmatization/|

scikit-learn developers, “Naive bayes,” Scikit-Learn. [Online|. Available: https:
//scikit-learn.org/stable/modules/naive_bayes.html.

T. K. .-.-. tejank10, “Spam-or-ham,” Github, Aug 2, 2017. [Online|. Available:
https://github.com/tejank10/Spam-or-Ham.

JJ, “Mae and rmse which metric is better,” Medium, Mar 23, 2016. [Online|.
Available: https://medium.com/human-in-a-machine-world/mae-and-rmse-
which-metric-is-better-e60ac3bdel3d.

Twitter, “Developer agreement and policy,” Twitter Corp., Effective: May 25,
2018. [Online|. Available: https://developer .twitter.com/en/developer -
terms/agreement-and-policy.html.

96

https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://github.com/tejank10/Spam-or-Ham
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d
https://developer.twitter.com/en/developer-terms/agreement-and-policy.html
https://developer.twitter.com/en/developer-terms/agreement-and-policy.html

15 Appendices

15.1 Appendix A - Project Initiation Document

Displayed on the following pages below.

97

Individual Project (CS31P16)

Department of Computer Science
University of Reading

Project Initiation Document

PID Sign-Off
Student No. 24005432
Student Name Andrew Sotheran
Email andrew.sotheran@student.reading.ac.uk
Degree programme
(BSc CS/BSc IT) BSc CS
Supervisor Name Kenneth Boness
Supervisor Signature
Date

SECTION 1 - General Information

Project Identification

Project ID
(as in handbook)

N/A

Project Title

Cryptocurrency market and value prediction tracking

Briefly describe the main purpose of the project in no more than 25 words

To provide a means to predict the value of cryptocurrencies that will aid in investor decision making
in investment of the market

Student Identification

14 Student Name(s), Course, Email address(s)
e.g. Anne Other, BSc CS, a.other@student.reading.ac.uk

Andrew William Sotheran
BSc CS
Andrew.sotheran@student.reading.ac.uk

Supervisor ldentification

Primary Supervisor Name, Email address
e.g. Prof Anne Other, a.other@reading.ac.uk

Secondary Supervisor Name, Email address
Only fill in this section if a secondary supervisor has been assigned to your project

Company Name

N/A

Company Address

N/A

Name, email and phone number of Company Supervisor or Primary Contact

N/A

SECTION 2 — Project Description

2.1

Summarise the background research for the project in about 400 words. You must include
references in this section but don’t count them in the word count.

To create a tool that aims to predict the price of cryptocurrencies that aids in investor decisions.
Research will need to be conducted into the following topics that surround data mining, machine
learning and artificial neural networks.

This research will consist along the lines of;

Natural Language processing and analysis — To analyse and process fed in data gathered through RSS
data feeds and social media feeds, through the underlying tasks of Natural language processing.
Content categorisation (search and indexing, duplication detection), Topic discovery and modelling
(Obtain meanings and themes within the data and perform analytic techniques), sentiment and
semantic analysis (which will identify the mood and opinions within the data), summariser (to
summarise a block of text and disregard the rest).

Machine learning algorithms: The three types of machine learning (Supervised, Unsupervised and
Reinforced)

The types of common algorithms used, each of these will be researched to identify the most suitable
for this project and only one will be used: (Linear Regression, Logistic Regression, Decision Tree,
SVM, Naive Bayes, kNN, K-Means, Random Forest, Dimensionality Reduction Algorithms,
Gradient Boosting algorithms (GBM, XGBoost, LightGBM, CatBoost).

Artificial Neural Networks: To identify the drawbacks and benefits of using them or other
computational models within machine learning. Recurrent Neural networks and 3rd generation
Neural Networks.

Data mining: To investigate the different techniques and algorithms used (Same as the ones listed
above for machine learning including C4.5, Apriori, EM, PageRanks, AdaBoost and CART) these
will be researched and the most appropriate identified.

To investigate techniques: for storing and processing large amount of data, such as Hadoop,
Elasticsearch utilities, Graphing and data modelling and visualisation.

To identify appropriate libraries for python or C for each of the topics above to aid in the creation of
this project. Libraries such as:

Natural Language Toolkit (NLTK) — python

Pandas - python

Sklearn - python

Numpy — python - scientific computation for working with arrays

Matplotlib - python - data visualisation

Investigate into types of databases. Sql and nosql for a storage medium between receiving data and
feeding it into the machine learning algorithm.

Investigate into the use of REST API and other web-service based technologies (GRPC,
Elasticsearch)

Investigate into frameworks for the thin client, such as Angular vs React, Nodejs, Leafelt.s, charts.js
Additionally Web scraping may be needed if certain website that don’t either have an API or JSON
for the data needed.

https://www.sas.com/en_gb/insights/analytics/what-is-natural-language-processing-nlp.html
https://blog.algorithmia.com/introduction-natural-language-processing-nip/
https://gerardnico.com/data_mining/algorithm
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.kdnuggets.com/2015/05/top-10-data-mining-algorithms-explained.html
https://www.datasciencecentral.com/profiles/blogs/artificial-neural-network-ann-in-machine-learning
http://scikit-learn.org/stable/index.html

https://grpc.io/docs/

Summarise the project objectives and outputs in about 400 words.

These objectives and outputs should appear as tasks, milestones and deliverables in your project plan.
In general, an objective is something you can do and an output is something you produce — one leads
to the other.

To produce a thin web client that provides a dashboard that provides tangible and useful information
to users such as; Their current price (Updated every 5 minutes), exchange rates, network hashrates,
historical price data. It will also display statistics about sentiment analysis conducted on social media
about the currency, graphical predictions on what the price may be, in a given time, and will also
compare this to other currencies for aid in investment.

To produce significant research into the topics in and around data mining, machine learning and
Artificial Neural network and the underlying tasks and algorithms used, the efficiency, drawbacks
and advantages of each to identify the most suitable for the use in this project.

To produce a system that analyses a data set obtained through social media feeds and posts on news
sites regarding crypto currencies. It should perform sentiment analysis using Natural Language
processing and analysis techniques to identify features and identifies the type of sentiment in the data
and categorises it for machine learning.

To utilise machine learning techniques and algorithms to produce a system that learns from historical
data to predict to an extent the possible future price of a given currency. To compare this with the use
of an Artificial Neural Network and to analyse the drawbacks of both.

Initial project specification - list key features and functions of your finished project.
Remember that a specification should not usually propose the solution. For example, your project
may require open source datasets so add that to the specification but don’t state how that data-link
will be achieved — that comes later.

The finished project should provide a thin client single page application. This will provide a means to
users the ability to view various statistics on crypto currencies on a dashboard that incorporates text
analysis through natural language analysis, and will utilise various machine learning and data mining
techniques to provide price predictions to the users. The nature and level of this will depend on the
research conducted into the areas of data mining, machine learning, natural language processing and
artificial neural networks, along with the algorithms used.

The data set will be created from scratch for this project as it will require the gathering of data from
numerous sources and performing text analysis on them to for the data needed. Data sets for the
characteristic and data for the currencies can be obtained from pre-existing data sets such as:
https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory
https://www.kaggle.com/jessevent/all-crypto-currencies

Web scraping may be included if certain news/social media websites do not provide an APl or RSS
feed for the analysis engine to perform text analysis on

Additionally, there will be a server between the analysis/prediction engine and the thin client that will
maintain a database, either SQL or NoSQL, that will hold statistics about the currencies and data
about the price predictions about the currencies. It will not hold any of the data used in the analysis
engine, as this database will only hold data available to the end users.

Describe the social, legal and ethical issues that apply to your project. Does your project
require ethical approval? (If your project requires a questionnaire/interview for conducting
research and/or collecting data, you will need to apply for an ethical approval)

The project will not be handling any user related data, therefore it does not need ethical approval.

Identify and lists the items you expect to need to purchase for your project. Specify the cost
(include VAT and shipping if known) of each item as well as the supplier.
e.g. item 1 name, supplier, cost

None Needed

State whether you need access to specific resources within the department or the University e.g.
special devices and workshop

Possibly a server to host the database and analysis engine on to perform the computation necessary,
and a server to host the thin client.

SECTION 3 - Project Plan
3.1

Project Plan

Split your project work into sections/categories/phases and add tasks for each of these sections. It is
likely that the high-level objectives you identified in section 2.2 become sections here. The outputs from
section 2.2 should appear in the Outputs column here. Remember to include tasks for your project
presentation, project demos, producing your poster, and writing up your report.

s Effort
Task No. Task description Outputs
(weeks)
1 Background Research
To identify the type of API/RPC
11 Investigate into RPC frameworks and REST APIs 0.3 framework that would be most
suitable
R rch into Natural Lan r ing and analvsi To get an understanding of how
12 ese? ch into Natural Language processing and analysis 0.5 NLP works and how it could be
techniques used
13 Research into the use of machine learning — types and 05 To grasp how ML paradigms work
' algorithms ' and how this project will use it
Research into the application of Neural Networks — To identify whether there will be a
14 K £ using th 0.3 need for a neural network or ML
drawbacks and advantages of using them paradigms can be used instead
Research techniques for storing and processing large aTr? d”&ﬁi;;ﬁ”iéhjszs;s’tssfel';f:on
15 amount of data, such as Hadoop, spark or Elasticsearch 1 more viable solution than standard
utilities. ML practices
16 Identify appropriate libraries for data modelling and 1 To identify what libraries will aid in
' visualisation, NLP and Machine Learning the construction of this project
To identify what frameworks the
. . . . thin client should be used with,
1.7 Investigate into frameworks for the front-end thin clients 0.3 along with drawbacks and
advantages
To understand the application of
1.8 Research web scraping techniques 0.3 these techniques and learn how to
apply them
2 Analysis and design
2.1 Resolve issues discovered by background research 0.2
Identify limitations discovered from research and
2.2 . . 0.1
what is not feasible
2.3 UML Diagrams/ XUML 0.2
24 Wire frames for frontend 0.1
25 Data Flow 0.1
2.6 User Flow 0.1
3 Develop prototype
3.1 Develop thin client 2
3.2 Develop analysis Engine 4
3.3 Develop Prediction Engine 3
34 Develop Unit tests 2
4 Testing, evaluation/validation
4.1 Unit testing 1
4.2 Acceptance Testing 0.8
4.3 User testing 0.8
5 Assessments
51 write-up project report 2 Project Report
5.2 produce poster 0.5 Poster
5.3 Log book 0.5

TOTAL Sum of total effort in weeks | 21.9

SECTION 4 - Time Plan for the proposed Project work
For each task identified in 3.1, please shade the weeks when you’ll be working on that task. You should also mark target milestones, outputs and key decision points.

To shade a cell in MS Word, move the mouse to the top left of cell until the curser becomes an arrow pointing up, left click to select the cell and then right click and
select ‘borders and shading’. Under the shading tab pick an appropriate grey colour and click ok.

START DATE: 10/2018 <enter the project start date here>

Project Weeks

i 0-3 3-6 6-9 9-12 12-15 | 15-18 | 18-21 | 21-24 | 24-27 | 27-30 | 30-33 | 33-36 | 36-39
Project stage

1 Background Research

Investigate into RPC frameworks and REST
APIs

Research into Natural Language processing

Research into the use of machine learning —

Research into the application of Neural

Research techniques for storing and

Identify appropriate libraries for data

Investigate into frameworks for the front-

Research web scraping techniques

2 Analysis/Design

Resolve issues discovered by background

Identify limitations discovered from

UML Diagrams/ XUML

Wire frames for frontend

Data Flow

User Flow

3 Develop prototype.

Develop thin client

Develop analysis Engine

Develop Prediction Engine

Develop Unit tests

4 Testing, evaluation/validation

Unit testing

Acceptance Testing

User testing

5 Assessments

write-up project report

produce poster

Log book

RISK ASSESSMENT FORM

Assessment Reference No.

Assessment date

Persons who may be affected by
the activity (i.e. are at risk)

Andrew Sotheran

Area or activity
assessed:

SECTION 1: ldentify Hazards - Consider the activity or work area and identify if any of the hazards listed below are significant (tick the boxes that apply).

i Use of portable Vehicles /driving IR s .

Fall of person (from 6 Lighting levels 11. | tools / equi t 16. | atwork 21 26 Occupational stress
work at height) g - | tools /equipmen - | atwor " | chemicals, dust :
Fall of obiects Heating & Fixed machinery or Outdoor work / Hazardous Violence to staff /

! 7. | ventilation 12. | lifting equipment 17. | extreme weather 22. | biological agent 27. | verbal assault
Slips, Trips & Layout , storage, Fieldtrips / field Confined space / . .
Housekeeping 8. | space, obstructions 13. IACESIEVEEAE 18. | work 23. | asphyxiation risk 28. O D e
Manual handling . . — - Condition of Lone working /
R 9. Welfare facilities 14, Noise or Vibration 19, Radiation sources 24. | Buildings & glazing 29. | work out of hours
Display screen Electrical Fire hazards & . . Other(s) - specify
equipment 10, Equipment X 15. | flammable material 20. Wi i (ESE 25. ecdisbaietey 30.

10

SECTION 2: Risk Controls - For each hazard identified in Section 1, complete Section 2.
Hazard | Hazard Description | Existing controls to reduce risk Risk Level (tick one) | Further action needed to reduce risks
No.
High | Med | Low (provide timescales and initials of person responsible)
Cable management is at a minimum, none are x | Sufficient cable management needed, cables
o) currently properly cable managed and kept out tied together and moved out of way of feet
3 Tripping over wires of way
Current screen contrast and brightness is X To have periodic breaks from the screen
. acceptable
5 Eye strain from
looking at a
monitor
Name of Assessor(s) SIGNED
Review date

11

Health and Safety Risk Assessments — continuation sheet

SECTION 2 continued: Risk Controls

Assessment Reference No

Continuation sheet number:

Hazard | Hazard Description | Existing controls to reduce risk Risk Level (tick one) | Further action needed to reduce risks
No.
High | Med Low | (provide timescales and initials of person responsible for
action)
Name of Assessor(s) SIGNED

Review date

12

15.2 Appendix B - Log book

The log book for this project is a physical book and was handed to the School of
Computer Science. Due to being a physical book, it cannot be inserted here.

110

	Abstract
	Acknowledgements
	Glossary
	Introduction
	Problem Articulation
	Problem Statement
	Stakeholders
	Project Motivation
	Technical Specification

	Quality Goals
	Process Description
	Quality Objectives
	Tools to Ensure Quality

	Literature Review
	Existing Tools
	Related research
	Data Collection
	Twitter and Twitter API
	Tweepy Python Package

	Sentiment Analysis
	Natural Language Processing
	Valence Aware Dictionary and sEntiment Reasoning

	Neural Networks
	Recurrent Neural Network (RNN)
	Long-Short Term Memory (LSTM)
	Keras and TensorFlow
	Optimisers
	Regularisation
	Dropout

	Machine Learning
	Naive Bayes

	Bag Of Words
	TF-IDF
	Addictive Smoothing
	Regression Performance Metrics

	Solution Approach
	Data gathering
	Data pre-processing
	Spam Filtering
	Language Detection
	Sentiment Analysis
	Neural Network
	Price Forecasting
	Frontend Application
	With reference to Initial PID
	Solution Summary
	Initial Data flow Overview

	System Design
	Dataflow Designs
	Interface Design

	Implementation
	Data collection
	Price Time-Series Historical Data
	Price Time-Series Live Data
	Historical Tweet Collection
	Live Tweet Collection

	Data pre-processing
	Tweet Filtering
	Language detection filtering
	Spam filter - Tokenisation, Ngrams, Stopword removal and Stemming

	Spam Filtering
	Naive Bayes model
	Classification
	Predict
	Metrics

	Sentiment Analysis
	Recurrent Neural Network - LSTM
	Dataset Creation
	Training and Testing Model

	Future Prediction Forecasting
	User Interface
	Key Functions
	Final Interface

	Testing Metrics and Accuracy
	Integration Testing
	Accuracy of Model & Results
	Results Discussion
	Execution Speeds

	Discussion: Contribution and Reflection
	Limitations
	Reflection

	Social, Legal and Ethical Issues
	Conclusion and Future Improvements
	Conclusion
	Future Improvements

	Appendices
	Appendix A - Project Initiation Document
	Appendix B - Log book

