@inproceedings{1, title={Sentiment analysis of Twitter data for predicting stock market movements}, author={Pagolu, Venkata Sasank and Reddy, Kamal Nayan and Panda, Ganapati and Majhi, Babita}, booktitle={2016 international conference on signal processing, communication, power and embedded system (SCOPES)}, pages={1345--1350}, year={2016}, organization={IEEE}, url = {https://arxiv.org/pdf/1610.09225.pdf} } @inproceedings{2, title={Non-linear autoregressive with exogeneous input (NARX) Bitcoin price prediction model using PSO-optimized parameters and moving average technical indicators}, author={Indera, NI and Yassin, IM and Zabidi, A and Rizman, ZI}, booktitle={Journal of Fundamental and Applied Sciences. Vol.35, No.35}, pages={791--808}, year={2017}, organization={University of El Oued}, url = {https://www.ajol.info/index.php/jfas/article/viewFile/165614/155073} } @inproceedings{3, title={Predicting Bitcoin price fluctuation with Twitter sentiment analysis}, author={Evita Stenqvist, Jacob Lonno}, booktitle={}, pages={}, year={2017}, organization={Diva}, url = {http://www.diva-portal.org/smash/get/diva2:1110776/FULLTEXT01.pdf} } @inproceedings{4, title={Predict Tomorrows Bitcoin (BTC) Price with Recurrent Neural Networks}, author={Orhan Gazi Yalcin}, booktitle={}, pages={}, year={2018}, organization={Towards Data Science}, url = {https://towardsdatascience.com/using-recurrent-neural-networks-to-predict-bitcoin-btc-prices-c4ff70f9f3e4} } @inproceedings{5, title={Stock Predictions through News Sentiment Analysis}, author={Intel-Corporation}, booktitle={}, pages={}, year={2017}, organization={Code Project}, url = {https://www.codeproject.com/Articles/1201444/Stock-Predictions-through-News-Sentiment-Analysis} } @inproceedings{6, title={Predicting the Price of Bitcoin Using Machine Learning}, author={Sean McNally, Jason Roche, Simon Caton}, booktitle={2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)}, pages={344--347}, year={2018}, organization={IEEE}, url = {https://ieeexplore.ieee.org/abstract/document/8374483} } @inproceedings{7, title={Search Tweets}, author={Twitter}, booktitle={}, pages={}, year={2018}, organization={Twitter Developers}, url = {https://developer.twitter.com/en/docs/tweets/search/overview} } @inproceedings{8, title={Consuming streaming data}, author={Twitter}, booktitle={}, pages={}, year={2018}, organization={Twitter Developers}, url = {https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.html} } @inproceedings{9, title={Streaming With Tweepy}, author={Joshua Roesslein}, booktitle={}, pages={}, year={2009}, organization={Tweepy}, url = {http://docs.tweepy.org/en/v3.4.0/streaming_how_to.html} } @inproceedings{10, title={Using Linked Data for polarity classification of patients experiences}, author={Mehrnoush Shamsfard, Samira Noferesti}, booktitle={Journal of Biomedical Informatics}, pages={6-19}, year={2015}, organization={Elsevier}, url = {https://www.sciencedirect.com/science/article/pii/S1532046415001276} } @inproceedings{11, title={Social media sentiment analysis: lexicon versus machine learning}, author={Chedia Dhaoui, Cynthia M. Webster, Lay Peng Tan}, booktitle={Journal of Consumer Marketing, Volume 34. Issue 6}, pages={}, year={2017}, organization={Emerald Insight}, url = {https://www.emeraldinsight.com/doi/pdfplus/10.1108/JCM-03-2017-2141} } @inproceedings{12, title={VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text}, author={C.J. Hutto and Eric Gilbert}, booktitle={Eighth International Conference on Weblogs and Social Media (ICWSM-14)}, pages={}, year={2014}, organization={Ann Arbor, MI}, url = {https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/8109/8122} } @inproceedings{13, title={Wisdom of Crowds}, author={Will Kenton}, booktitle={}, pages={}, year={2018}, organization={Investopedia}, url = {https://www.investopedia.com/terms/w/wisdom-crowds.asp} } @inproceedings{14, title={A Beginner's Guide to Neural Networks and Deep Learning}, author={Skymind}, booktitle={A.I. Wiki}, pages={}, year={2018}, organization={Skymind}, url = {https://skymind.ai/wiki/neural-network} } @inproceedings{15, title={What is a neural network}, author={Jonas DeMuro}, booktitle={World of tech}, pages={}, year={2018}, organization={techradar}, url = {https://www.techradar.com/uk/news/what-is-a-neural-network} } @inproceedings{16, title={Supervised dictionary learning}, author={Mairal, J., Ponce, J., Sapiro, G., Zisserman, A. and Bach, F.R., }, booktitle={Advances in neural information processing systems }, pages={1033--1040}, year={2009}, organization={NIPS Proceedings}, url = {http://papers.nips.cc/paper/3448-supervised-dictionary-learning} } @inproceedings{17, title={Learning internal representations by error propagation}, author={Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J}, booktitle={}, pages={}, year={1985}, organization={California Univ San Diego La Jolla Inst for Cognitive Science}, url = {https://apps.dtic.mil/docs/citations/ADA164453} } @inproceedings{18, title={A Beginner's Guide to LSTMs and Recurrent Neural Networks}, author={Skymind}, booktitle={A.I. Wiki}, pages={}, year={2018}, organization={Skymind}, url = {https://skymind.ai/wiki/lstm} } @inproceedings{19, title={Recurrent Neural Networks and LSTM}, author={Niklas Donges}, booktitle={}, pages={}, year={2018}, organization={Towards Data Science}, url = {https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5} } @inproceedings{20, title={A Gentle Introduction to Exploding Gradients in Neural Networks}, author={Jason Brownlee, PhD.}, booktitle={}, pages={}, year={2017}, organization={Machine Larning Mastery}, url = {https://machinelearningmastery.com/exploding-gradients-in-neural-networks/} } @inproceedings{21, title={Recurrent Neural Networks (RNN) - The Vanishing Gradient Problem}, author={Super Data Science Team}, booktitle={}, pages={}, year={2018}, organization={Super Data Science}, url = {https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-problem} } @inproceedings{22, title={Long short-term memory}, author={Hochreiter, Sepp and Schmidhuber, Jurgen}, booktitle={Neural computation, Volume 9. 8}, pages={1735--1780}, year={1997}, organization={MIT Press}, url = {https://www.bioinf.jku.at/publications/older/2604.pdf} } @inproceedings{23, title={Understanding LSTM and its diagrams}, author={Shi Yan}, booktitle={}, pages={}, year={Mar 13, 2016}, organization={Medium}, url = {https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714} } @inproceedings{24, title={Understanding LSTM Networks}, author={Christopher Olah}, booktitle={}, pages={}, year={2015}, organization={}, url = {https://colah.github.io/posts/2015-08-Understanding-LSTMs} } @inproceedings{25, title={Using LSTMs to forecast time-series}, author={Ravindra Kompella}, booktitle={}, pages={}, year={2018}, organization={Towards Data Science}, url = {https://towardsdatascience.com/using-lstms-to-forecast-time-series-4ab688386b1f} } @inproceedings{26, title={Tensorflow: A system for large-scale machine learning}, author={Abadi, Martin and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Irving, Geoffrey and Isard, Michael and others}, booktitle={12th Symposium on Operating Systems Design and Implementation 16)}, pages={265--283}, year={2016}, url={https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf} } @inproceedings{27, title={Optimization: Stochastic Gradient Descent}, author={Stanford}, booktitle={UFLDL Tutorial}, pages={}, year={}, url={http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent} } @inproceedings{28, title={What are differences between update rules like AdaDelta, RMSProp, AdaGrad, and Adam}, author={Rajarshee Mitra}, booktitle={}, pages={}, year={2016}, organization={Quora}, url={https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM} } @inproceedings{29, title={Variants of rmsprop and adagrad with logarithmic regret bounds}, author={Mukkamala, Mahesh Chandra and Hein, Matthias}, booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70}, pages={2545--2553}, year={2017}, organization={JMLR.org}, url={https://arxiv.org/pdf/1706.05507.pdf} } @inproceedings{30, title={Overview of different Optimizers for neural networks}, author={Renu Khandelwal}, booktitle={}, pages={}, year={2019}, organization={Medium}, url={https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3} } @inproceedings{31, title={Adam: A method for Stochastic Optimization}, author={Diederik P. Kingma, Jimmy Lei Ba}, booktitle={arXiv preprint arXiv:1412.6980}, pages={}, year={2014}, organization={arXiv}, url={https://arxiv.org/pdf/1412.6980.pdf} } @inproceedings{32, title={An empirical study of the naive Bayes classifier}, author={Rish, Irina and others}, booktitle={IJCAI 2001 workshop on empirical methods in artificial intelligence}, volume={3}, number={22}, pages={41--46}, year={2001}, url={https://www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf} } @inproceedings{33, title={Tweepy Documentation}, author={Joshua Roesslein}, booktitle={}, volume={}, number={}, pages={}, year={2009}, url={http://docs.tweepy.org/en/v3.5.0/} } @inproceedings{34, title={Tensorflow Vs. Theano: What Do Researchers Prefer As An Artificial Intelligence Framework}, author={Srishti Deoras}, booktitle={}, volume={}, number={}, pages={}, year={2017}, organization={Analytics India}, url={https://www.analyticsindiamag.com/tensorflow-vs-theano-researchers-prefer-artificial-intelligence-framework} }