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Abstract

The volatility of the stock markets is an aspect that is both hard to predict and to
mitigate particularly when relating to the cryptocurrency market. Commodities such
as cryptocurrencies are profoundly volatile and have attracted investors in an attempt
to make quick profits on the market. These financial commodities are subject to
the whim of public confidence and platforms such as Twitter and Facebook are most
notably utilised to express opinions. Extrapolating sentiment from such platforms has
been used to gain insight into topics across industries, thus applying it to crypto-market
analysis could serve to show a relationship between public opinion and market change.

This project looks into public perception of the cryptomarket, by analysing Bitcoin-
related tweets per hour for sentiment changes that could indicate a correlation to
market fluctuations in the near future. This is achieved by training a recurrent neural
network on the severity changes of historical sentiment and price over the past year
every hour. The predictions are then shifted forward in time by 1 hour to indicate the
corresponding Bitcoin price interval.



Acknowledgements

I would like to express my gratitude to Dr. Kenneth Boness for his continued support
and guidance throughout this project.

Secondly, I want to express gratitude to PhD. Jason Brownlee, of Machine Learning
Mastery for having clear and thorough explanations of machine learning concepts and
metrics.

I would also like to thank my family for their support during the development of this
project.


machinelearningmastery.com
machinelearningmastery.com

Glossary

Bull(ish)/Bear(ish) Markets - Relates to a trend of the market price increasing and
decreasing respectively

Highs/Lows - The highest and lowest trading price of a giving period
Fiat Currency - A currency without intrinsic value that has been established as money
BTC - Bitcoin’s stock symbol

Twitter - Online social media platform, which allows users to post information or
express opinions through messages called ” Tweets”

Tweets - The name given for messages posted on the Twitter platform, which are
restricted to 280 characters.

Hashtag - Is a keyword or phrase used to describe a topic and allows the tweets to be
categorised.

Fomo (Fear of Missing Out) - Is used to describe buying behaviour when stocks are
moving suddenly and more buyers appear to enter all of a sudden.

Shorting - Or short sale, is the sale of an asset that the investor buys shares and
immediately sells them, hoping to make a profit from buying later at a lower price.

Doubling Down - Is to take further risk on a stock by doubling effort/investment in a
hope and attempt to raise the price

RNN - Recurrent Neural Network
LSTM - Long-Short Term Memory Neural Network
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Introduction

The premise of this project is to investigate whether the sentiment expressed in social
media has a correlation to the prices of cryptocurrencies and how this could be used
to predict future changes in the price.

The chosen cryptocurrency that will be of focus for this project will be the currency
Bitcoin (BTC), due to having the largest community and backing and has been known
to lead other fiat currencies. Bitcoin is seen as one, if not the first cryptocurrency to
bring a broader following to the peer-to-peer token transaction scene since 2009. Al-
though it was not the first token to utilise blockchain technology, it allowed investors
to openly trade a public cryptocurrency which provided pseudonymous means of trans-
ferring funds through the internet. Thus it has been around longer than most of the
other fiat currencies and is the most popular crypto-token due to it’s more extensive
community base.

Most financial commodities are subject to the whim of public confidence and are the
core of its base value. A platform that is frequently used for the public to convey their
opinions on a commodity is that of Twitter which provides arguably biased information
and opinions. Whether the opinions present a basis in facts or not, they are usually
taken at face value and can influence the public opinion of given topics. As Bitcoin has
been around since 2009 the opinions and information on the commodity are prevalent
through the platform. In the paper Sentiment Analysis of Twitter Data for Predicting
Stock Market Movements by Majhi et al. [1] 2.5 million tweets on Microsoft were
extracted from Twitter, sentiment analysis and logistical regression performed on the
data yielded 69.01% accuracy for a 3-day period on the increase/decrease in stock
price. These results showed a ” good correlation between stock market movements and
the sentiments of the public expressed in Twitter” .

The background of this project is in response to the volatility of the cryptocurrency
market, which can fluctuate at a moments notice and can be seen to be social media
driven. The history of the price of Bitcoin and what was being discussed on the
currency around it’s most volatile period to-date, Nov-2017 to Feb-2018, shows a strong
bullish trend which saw Bitcoin reach a $19,500 high in mid-Dec. While social media,
such as Twitter, during that period was had an extremely positive outlook on the
cryptocurrency. The trend was short lived and saw the market crash only a month
later, with only a couple of sell-offs, expected for the holidays rush, accompanied by
negative outlooks posted on social media turned the market against itself which saw
the longest bearish market in Bitcoin’s history and is still trying to recover today.

Due to how volatile the crypto-market can be, there is a need to either mitigate or
to anticipate where the markets are heading. As the crypto-market and Bitcoin are
affected by socially constructed opinions, either through Twitter, news articles or other
forms of media, there is a way to perform the latter, where the prices of Bitcoin could
be predicted based on the sentiment gathered from social media outlets.



This project aims to create a tool that gathers tweets from Twitter, obtains the overall
sentiment score of the given text while gathering historical price data for the period
gathering occurs. Features are then extracted from the gathered data and used in a
neural network to ascertain whether the price of the currency can be predicted from
the correlation between the sentiment and price history of the data.

This report will discuss the justifications for the project and the problems it will be
attempting to resolve, the stakeholders that would benefit the most from this system
and what this project will not attempt to accomplish. Similar tools will be critiqued
and examined for their feature set and credibility in the literature review along with
current sentiment analysers, algorithms, natural language processing techniques and
neural networks in their respective topics and comparing their accuracy for this project
purpose. The solution approach will discuss the decisions and reasoning behind choos-
ing the techniques and tools used for this project and will outline the requirements for
this project. Implementation of the chosen techniques and tools, with the discussion
of essential functions of the system will formulate the implementation section of this
report with an in-detail explanation of the function’s use and data flow of the system.



Problem Articulation

Problem Statement

The fundamental problems this project attempts to address are that of, an open-source
system available to the public that aids in the analysis and prediction of BTC. The
accuracy of open-source tools and technology when applied to the trading market scene
and to identify whether there is a correlation between Twitter sentiment and BTC price
fluctuation. While there are existing tools, only a few are available to the public and
only provide basic functionality, while others are kept in-house of major corporations
who invest in this problem domain.

The other issue presented here is that assuming perfect accuracy can be achieved is
naive. As this project will only be using existing tools and technologies; thus, there are
limitations to the accuracy of what can be obtained. One of that being the suitability
of the tools, there are no open-source sentiment analysers for stock market prediction,
thus finding a specifically trained analyser for the chosen domain in highly unlikely.
In relation, finding the most suitable machine learning or neural network is equally
important as this will determine the accuracy of the predictions. Due to being a
regression problem, machine learning techniques and neural networks that focus around
this and forecasting should be considered.

The accuracy and suitability of various machine learning methods and neural networks
are a known issue in their respective domains. This investigation should be carried out
to determine their suitability for their needed use in this project and will be detailed
in the literature review.

This project will focus on the investigation of these technologies and tools to justify
whether it is feasible to predict the price of BTC based on historical price and the
sentiment gathered from Twitter. Limitations of the system and it’s accuracy in pre-
dictions should be investigated and discussed to determine the implemented solution
is the more suitable compared to other methods.

Stakeholders

The main stakeholders of this system would be those looking to invest in the cryp-
tocurrency markets, in this projects regard, specifically into Bitcoin.

e Public Investors - These are investors from the general public. These investors
can decide to either actively or passively invest in the markets but are essential
for the general use of a given cryptocurrency. This type of investor would benefit
the most from an open-source system such as this, as it will aim to provide a basis
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for decisions for buying or selling Bitcoin. Additionally, due to the lack of any
open-source tools available, these stakeholders could be seen as being left in the
dark when it comes to predicting the direction of Bitcoin where Businesses and
Enterprises will have a one up, due to having an internal system for predictions.

Speculators - These stakeholders can be both public and business, who aim for the
chance of the possibility fast. They actively invest at points where a market is an
impending rise in price and tend to sell after a market makes them a reasonable
amount of money before it possibly drops. These stakeholders would benefit from
such a system as it will provide a means to identify and predict short term gains
in the Bitcoin market, and if taken into decisions could make a profit.

Business Investors: These will be investors of a business who would be investing
on the behalf of a company. A system such as that this project will provide may
benefit such a stakeholder, but the information would be used as a collective
with others to justify the investment. Additionally, this system may not benefit
this stakeholder as the company they are investing for may have an equivalent
or better system.

Prospect Investors: These are new investors to the cryptomarket scene who are
looking to get into the market and are generally looking for initial information
of the market movement. This system will benefit such a stakeholder in their
initial decisions in market investment, but not as much as a generally more active
investor. This is due to the extent to which a new investor invests compared to
a establish active investor.

Developer - Andrew Sotheran: The developer responsible for this project by
developing a solution that satisfies the problem and objective defined in the
Technical Specification. As the sole developer of this project it should be ensured
that the system is developed on time and the project runs smoothly.

Project Supervisor - Kenneth Boness: Is the projects supervisor whom will over-
see the development through weekly project meetings. Weekly feedback will be
given on the progress and direction of development, and will offer advice to ensure
the quality of the solution.

Project Motivation

The motivation behind the project stems from a range of points, from personal and
public issues with the volatility if the crypto-market, and how losses specifically could
be mitigated. The personal motivations behind the conceptualisation of this began two
years ago during the crash of late 2017-2018, which saw new investors blindly jump
into the trend that was buying cryptocurrencies. During this period of November to
December 2017 saw Bitcoin’s price reach $20,000 from $5,000, new public investors
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jumped on the chance to buy into the trend of possibly making quick profits and the
fear of missing out (FOMO). In late December, a few holiday sell-offs occurred from
business and big investors, this coupled with a few negative outlooks posted on social
media by news outlets caused the market to implode causing investors to panic sell
one after the other and posting negativity on social, thus causing more decline in
the market. As a result, this caused personal monetary loss and distress as being a
long-term investor.

Another motivation is that at the time of writing, there are no publically available
systems that combine sentiment analysis with a historical price to forecast the price
of Bitcoin or any other cryptocurrency. There are papers and a few code repositories
that implement a similar concepts [2] - Use of a Multi-layer Perceptron network for
moving averages in Bitcoin price, |3] - Predicting Bitcoin price fluctuation with Twitter
sentiment analysis, [4] - Predict Tomorrows Bitcoin (BTC) Price with Recurrent Neural
Networks but are not operational. A system such as [1] hosted on Coingecko, a popular
cryptocurrency track site, provides a tool for basic sentiment analysis but doesn’t give
an evaluated indication of the direction of the market as a prediction. This leaves the
public to the whim of volatility of the market without a means to know what the next,
say an hour, could entail to possibly reduce losses if the market drops. Such systems are
usually kept in-house of major corporations who invest significant time into tackling
such a problem. Additionlly, this could be seen as a positive for major investors, as
such a system could cause panic selling if public investors solely trusted such a system.
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Technical Specification

This project will need to follow a specification to ensure that the quality and the prob-
lem statement is met. This section will outline what this project should include, what
it will not consist of and will guide the development of this project.

General:

e To investigate into the use of lexicon-dictionary based sentiment analyser ap-
proach in for sentiment analysis and it’s customisability for a given topic domain

e To create a system that can predict the next hour of Bitcoins price when given
the price and sentiment for the past hour

e To investigate into natural language data pre-processing techniques and how
these could be used to filter out unwanted data

e To investigate into the use of a neural network, specifically an LSTM for fore-
casting price data

e Ultimatly, to investigate into how the use of sentiment effects the prediction of
price for the next hour

Natural Language pre-processing (Spam and language detection filtering)

e To produce a system that processes the historical and live tweets, removing un-
wanted characters, removing urls and punctuation.

e To produce a system for spam filter using probability likelihood for processed
tweets. A naive Bayes approach may be suitable for this given task

e To produce a language detection and filtering system that removes all tweets that
are not of the English language or containing non-basic-latin characters

e To provide a means for stemming, tokenisation and stopword removal to aid in
data pre-processing for language detection and spam filtering

Neural Network

e To produce a neural network which trains on collected, historical and live data,
to forecast the future price of Bitcoin, based on price and sentiement
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e To produce a neural netowork which accomplished the same as the other above,
but with out use of sentiment

e To produce metrics to justify accuracy of the model

e To produce data files containing, the current time of predictions alongside current
hour price and sentiment. This should also include a suggested action based on
a threshold for the price difference between hours.

e To produce data files containing the true and predicted price values of every hour
for trained data, and another for current reoccuring predictions.

Interface

e To produce a basic interface which displays the predicted values alongside true
price values with a time interval step of an hour. This can be displayed as both
a table consisting of:

Date of prediction, predicted price of next hour, current hour price and senti-
ment, and a suggested action based on a threshold for the price difference between
hours.

To produce charts displaying the true and predicted price values for every
hour, from both start of new predictions made, and from training predictions

e To display a table of performance metrics of the trained model

Server

e This system, both prediction system and interface, should be deployed to a server
due to the need to be constantly running

This project will not attempt to justify the accuracy of the chosen algorithm or tools
over other algorithms. It will be discussed in the solution approach the justifications
made on why the chosen algorithm and tools have been used for this project over the
others, but accuracy will not be directly compared.

This project will only be coded to predict an hour ahead as the model will be trained
on an hourly basis as the data is gathered per hour. Predictions for further in the
future can be modelled but will be seen as a future improvement to the system.

The detail of a interface may be subject of change through this project due to time
contraints and the focus being the investigation of the impact social media has on
market predictions.
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Project Constraints

The following constraints are recognisted in this project

Quality Goals
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Literature Review

Existing Tools

An aspect that this project will be attempting to address is that, at the time of writ-
ing, there are a limited amount of systems available to the public that either provide
sentiment analysis or predictions of the crypto-market. Additionally, none known that
combine both sentiment and price analysis to make said predictions on the direction
of the market.

Such tools are usually provided by exchanges which correspond the amount of positive
and negative sentiments with a suggestion to buy and sell. These tools, however, are
vague in their suggestions as they don’t provide any further analysis on when the best
time would be to conduct an action on the market, and simply display the number of
tweets per sentiment level. A well-known cryptocurrency tracking site,Coingeckol pro-
vides a basic sentiment analysis tool for their top 30 ranking cryptocurrencies tracked
on the site. This tool shows the sentiment analysis of tweets from Twitter every hour
for a given cryptocurrency. This is displayed as a simple pill on the page showing the
ratios of positive, neutral and negative tweets. See Appendix C' for visual representation

Related research

There has been an abundant amount of research conducted in this problem domain.
Many theses globally have been published in recent years on the topic of cryptocurrency
market predictions and analysis, and even more, research conducted on general stock
markets further back.

The thesis written by Fuvita Stenquist and Jacob Lonno of the K'TH Royal Institute of
Technology [3] investigates the use of sentiment expressed through micro-blogging such
as Twitter can have on the price fluctuations of Bitcoin. Its primary focus was creating
an analyser for the sentiment of tweets more accurately by not only taking into account
negation, but also valence, common slang and smileys”, than that of former researchers
that "mused that accounting for negations in text may be a step in the direction of more
accurate predictions.”. This would be built upon the lexicon-based sentiment analyser
VADER to ascertain the overall sentiment scores were grouped into time-series for
each interval from 5 minutes to 4 hours, along with the interval prices for Bitcoin.
The model chosen was a naive binary classified vectors of predictions for a certain
threshold to "wltimately compare the predictions to actual historical price data”. The
results of this research suggest that a binary classification model of varying threshold
over time-shifts in time-series data was "lackluster”, seeing the number of predictions
decreasing rapidly as the threshold changed. This research is a reasonable basis of
starting research upon, as it suggests tools such as VADER for sentiment analysis and
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that the use of a machine learning algorithm would be a next step in the project that
would yield better more accurate results.

Another thesis written by Pagolu, Venkata Sasank and Reddy Kamal Nayan, Panda
Ganapati and Majhi, Babita 1] on ”Sentiment Analysis of Twitter Data for Predicting
Stock Market Movements” 2.5 million tweets on Microsoft were extracted from Twit-
ter, sentiment analysis and logistical regression performed on the data yielded 69.01%
accuracy for a 3-day period on the increase/decrease in stock price. These results
showed a ” good correlation between stock market movements and the sentiments of the
public expressed in Twitter”. Using various natural language pre-processing tweets for
feature extraction such as N-gram representation the sentiment from tweets were ex-
trapolated. Both Word2vec and a random forest classifier were compared for accuracy,
Word2vec being chosen over the machine learning model. Word2vec, being a group of
related shallow two-layer neural network models to produce word embeddings.

A topic that reoccurs in various papers and theses is that of the use and focus of
regression techniques and machine learning methods. Few implement a fully fledged
neural network; the above paper attempts to use a simple network to achieve predic-
tions of classification of sentiment for stock market movement then correlated this with
historical data of prices. An article posted on ”Code Project” by Intel Corporation
[5] compares the accuracy of three machine learning algorithms; Random Forest, Lo-
gistic Regression and Multi-Layer Perceptron (MLP) classifiers on predicting the price
fluctuations of Bitcoin with embedded price indices. Results showing “that using the
MLP classifier (a.k.a. neural networks) showed better results than logistic regression
and random forest trained models”. This assumption can be backed up by the results
from a thesis posted on IEEE [6] which compares a Bayesian optimised recurrent neural
network and a Long Short Term Memory (LSTM) network - showing the LSTM model
achieving “the highest classification accuracy of 52% and a RMSE of 8%”. With inter-
est in neural networks personally and with little papers utilising them for this purpose
a neural network will thus be implemented, and the accuracy of one’s predictions with
use of sentiment analysis data analysed and discussed.

Data Collection
Twitter and Twitter API

Twitter is a micro-blogging platform that was launched in 2006 and provides it’s users
the ability to publish short messages of 140 characters. The messages published could
be of any form, from news snippets, advertisement, or the prevalent publication of
opinions which allowed a platform of extensive diversity and knowledge wealth. As of
the time of writing, the message character limit was increased to 280 characters, the
platform has over 300 million monthly active users, and around 1 million tweets are
published per day. Due to the length restriction and the primary use of the platform
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to express opinions Twitter is seen as a gold mine for opinion mining.

The Twitter API has an extensive range of endpoints that provide access from stream-
ing tweets for a given hashtag, obtaining historical tweets for a given time-period and
hashtag, posting tweets on a users account and to change settings on a user account
with authentication. The exhaustive range of features provided by these endpoints
makes data collection from Twitter straight forward as one can target a specific end-
point for the required data. Due to Twitter being the target for opinion mining within
this project the Twitter API will ultimately need to be utilised. This can either be
used for the gathering of historical tweets or streaming current tweets for the #Bitcoin
hashtag.

There are, however, limitations and rate limits imposed on users of the API. Twitter
employs a tiering system for the API - Standard, Premium and Enterprise tiers, each
of which provides different amounts of access for data collection. If the API were to be
used to capture historical data for a span of 3 months, each tier is allowed to obtain
varying amounts of data for different durations; [7]

e A Standard user would be able to capture 100 recent tweets for the past 7 days

e A Premium user would be allowed to capture up to 500 tweets per request for
a 30-day span and will have access to a full-archive search to query up to 100
tweets per request for a given time period, with a 50 request limit per month

e An Enterprise user would be able to capture up to 500 tweets per unlimited
requests for a 30-day span and will be able to query the full-archive of tweets for
a given hashtag up to 2000 tweets per unlimited amount of requests for a given
time period

Each tier has individual costs while the standard user negating this as a basic tier. Due
to only being elegable for the Premium tier for educational purposes, historical data
gathering will be limited to 100 tweets per request with a limitation of 50 requests per
month. Furthermore streaming tweets is an Enterprise feature which rules out the the
Twitter APT for use of streaming current real-time data [§].

Tweepy Python Package

Tweepy is a python package for accessing the Twitter API. It fundamentally accom-
plishes the same means if one to conduct a GET request to the Twitter API, except
it simplifies this into a simple to use API that is easier to implement and automate in
python [9]. Consequently, it builds upon the existing Twitter API to provide features
such as automated streaming of provided hashtags to the API. It realises this by initial-
ising a listener instance for a provided set of API credentials, handling authentication,
connections, creating and destroying sessions. Due to Twitter’s streaming API being
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only available to Enterprise users [7], using Tweepy to stream data for a given hashtag
will provide the real-time data needed. The streaming of current data by Tweepy is
accomplished by setting up a stream which listens for new data for a given hashtag,
which bypasses the need for the Enterprise tweet tracker provided by the Twitter API.

Sentiment Analysis

In short, sentiment analysis is the process and discovery of computationally identi-
fying and categorising the underlining opinions and subjectivity expressed in written
language. This process determines the writer’s attitude towards a particular topic
as either being positive, neutral or negative in terms of opinion, known as polarity
classification.

Natural Language Processing

Polarity classification is the focus of sentiment analysis and is a well-known problem
in natural language processing that has had significant attention by researchers in
recent years [1][3][6][10]. Traditional approaches to this have usually been classified
to dictionary-based approaches that use pre-constructed sentiment lexicons such as
VADER or usually confined to machine learning approaches. The latter requires an
extensive amount of natural language pre-processing to extrapolate vectors and features
from the given text; this is then fed into a machine learning classifier which attempts
to categorise words to a level of sentiment polarity. Natural language pre-processing
techniques, supported by the NLTK (Natural Language Toolkit) python package that
would be required for this approach would consist of;

e Tokenisation: The act of splitting a stream of text into smaller units of typo-
graphical tokens which isolate unneeded punctuation.

e Removal of domain specific expressions that are not part of general purpose
English tokenisers - a particular problem with the nature of the language used in
tweets, with @-mentions and #-hashtags

[RERIEISS PR P}
, 1

e Stopword removal: Are commonly used words (such as "the”,”in””a”) that pro-

vide no meaning to the sentiment of a given text

e Stemming: Is used to replace words with common suffixes and prefixes, as in ”go”
and ”"goes” fundamentally convey the same meaning. A stemmer will replace such
words with their reduced counterparts

e Term Probability Identification and Feature Extraction: This is a process that
involves identifying the most frequently used words in a given text, by using a
probability type approach on a pre-defined dataset which classifies a range of
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texts as with overall negative or positive a machine learning algorithm is trained
to classify these accordingly.

e Ngrams: Are a contiguous sequence of n items from a given sample of text.
The use of Ngrams in natural language processing can improve the accuracy of
classification. For example: Good and Not Good have opposite meanings. By
only using 1 token (1gram) not good (not and good) can be incorrectly classified.
As the english language contains a significant amount of 2gram type word chains
using 2gram can improve the accuracy of classification.

The former, seen and has been proven to provide higher accuracy than traditional
machine learning approaches [11], and need little pre-processing conducted on the data
as words have a pre-defined sentiment classification in a provided lexicon. Although
these lexicons can be complex to create, they generally require little resources to use
and alter.

Valence Aware Dictionary and sEntiment Reasoning

VADER is a combined lexicon and rule-based sentiment analysis tool that is specifically
attuned to sentiments expressed in social media and works well on texts from other
domains. It is capable of detecting the polarity of a given text - positivity, neutrality,
and negativity [12], and also calculate the compound score which is calculated by
summing the valence scores of each word in the lexicon. VADER uses a human-centric
approach to sentiment analysis, combining qualitative analysis and empirical validation
by using human raters to rate the level of sentiment for words in its lexicon. Vader also
has emoticon support which maps these colloquialisms have pre-defined intensities in
its lexicon, which makes VADER specifically suitable for the social media domain were
the use of emoticons, utf-8 emojis and slang such as ”Lol” and ”Yolo” are prevalent
within the text. Additionally, VADER is provided as a lexicon and a python library
under the MIT license, this means that it is open-source software. This means that the
lexicon can be altered and added to abling it to be tailored to specific topic domains.

VADER was constructed by examining and extracting features from three pre-existing
well-established and human-validated sentiment lexicons |12] - (LIWC) Linguistic In-
quiry and Word Count, (ANEW) Affective Norms for English Words, and (GI) General
Inquirer. This is supplemented with additional lexicon features ”"commonly used to ex-
press sentiment in social media text (emoticons, acronyms and slang)” [12] and uses
”wisdom-of-the-crowd” approach [13] to establish a point of estimations of sentiment
valance for each lexical feature candidate. This was evaluated for the impact of gram-
matical and syntactical rules and 7,500+ lexical features, with mean valence ”;; zero,
and SD j= 2.5”7 as a human-validated ”gold-standard” sentiment lexicon. [12]Section
3.1
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VADER is seen as a ”Gold Standard” for sentiment analysis, in the paper for VADER,
[12] A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,
it was compared against 11 other "highly regarded sentiment analysis tools/techniques
on a corpus of over 4.2K tweets” for polarity classification across 4 domains. Re-
sults showing VADER, across Social media text, Amazon reviews, movie reviews and
Newspaper editorials, consistently outperforming other sentiment analysis tools and
techniques showing a particular trend in performing significantly higher on analysis of
sentiment in tweets. |12| Section 4: Results

Neural Networks

A neural network is a set of perceptrons modelled loosely after the human brain that
is designed to recognise patterns in whatever domain it is intended to be trained using.
A neural network can consist of multiple machine perceptrons or clustering layers in a
large mesh network, and the patterns they recognise are numerical which are contained
in vectors. Pre-processed data, confined and processed into pre-defined vector labels,
are used to teach a neural network for a given task. While this differs from how
an algorithm is coded to a particular task, neural networks cannot be programmed
directly for the task. The requirement is for them to learn from the information by use
of different learning strategies; |14][15]

Inputs Weights

X1

Activation
Function

X2
output
o ———

X3

Xn

Figure 1: Basic perceptron layout

e Supervised learning: Simplest of the learning forms, where a dataset have been
labeled which indicate the correct classified data. The input data is learned upon
until the desired result of the label is reached [16]

e Unsupervised learning: Is training the with a dataset without labels to learn
from. The neural network analyses the dataset with a cost function which tells
the neural network how far off target a prediction was. The neural network then
adjusts input weights in attempt to increase accuracy. [15]
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e Reinforced learning: The neural network is reinforced with positive results and
punished for negative results causing a network to learn over iterations.

Recurrent Neural Network (RNN)

The type of neural network that is of focus for this project will be that of a Long-Short
Term Memory (LSTM); however, it is crucial to understand how this is an extension
of a Recurrent Neural Network (RNN) and how the underlying network works.

Recurrent Neural Networks (RNN) are a robust and powerful type of neural network
and is considered to be among the most encouraging algorithms for the use of classi-
fication, due to the fact of having internal memory. RNNs are designed to recognise
patterns in sequences of presented data or most suitably, time-series data, genomes,
handwriting and stock market data. Although RNNs were conceptualised and invented
back in the 1980s [17], they’ve only really shown their potential in recent years, with
the increase of computational power due to the level of sequencing and internal mem-
ory store to retrain. Due to this 'internal’ memory loop, RNNs are able to remember
data and adjust neurons based on failures and alternating parameters. The way this is
accomplished, knowing how a standard neural network such as a feed-forward network,
should initially be understood. [1§]

A standard, feed-forward neural network has a single data flow with an input layer,
through hidden computational layers, to an output layer. Therefore any node in the
network will never see the same data again. However, in an RNN data is cycled through
a loop over the same node, thus two inputs into the perception. Decisions are influenced
by previous data that it has previously learned from if any, which in turn affects output
and the weights of the network. [19]

Perceptron Perceptron

Output Layer Output Layer

Input Layer Input Layer

Figure 2: Feed-forward network (left) vs Recurrent Neural network (right)

The act of tweaking weights to alter the processing of the next iteration of data in an
RNN is called backpropagation, which in short means going back through the network
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to find the partial derivatives of the error with respect to the weights after output has
occurred. Along with gradient descent, an algorithm that adjusts the weights up or
down depending on which would reduce the error. There are however a few obstacles
of RNNs;

e Exploding Gradients: Is when gradient decsent assigns high importance to the
weights. As in the algorithm assigns a ridiculously high or low value for the
weights on iteration which can cause overlow and result in NaN values

e Vanishing Gradients: Is when the values of a gradient are small enough that
weights cannot be altered and the model stops learning.

These issues are overcome by the concept of Long-Short Term Memory neural networks,
coined by Sepp Hochreiter and Juergen Schmidhuber, 1997 .

Long-Short Term Memory (LSTM)

LSTMs are an extension of recurrent neural networks capable of learning long-term
dependancies and were conceptualised by Sepp Hochreiter and Juergen Schmidhuber,
1997 . LSTMs were explicity designed to avoid long-term dependancy problems
such as exploding and vanishing gradients. As they are an extension of RNNs they
operating in almost the exact same manner, but stores the actual gradients and weights
in memory which allows for LSTMs to read, write and alter the values. A way of
explaining how this works is seeing the memory block as a gated cell, where "gated’ is
that the cell decides whether or not to store or alter data in it’s memory based input
data and the importance assigned to it. In a sense it learns over time of which values
and data is important.

K —(D

e Tfstis 156 Ll o
o

Inputs: outputs: Nonlinearities: Vector operations:
Input vector Memory from ( sigmoid (%) Element-wise
current block \ G / o multiplication
/7 7\ Memory from Output of Hyperbolic | + | Elementwise
(9% ) previousblock ) curren 't block tangent Summation /
47\ outputof

/) previous block ias: @)

Figure 3: A conceptual design of an LSTM cell bank - from Medium article by Shi
Yan: Understanding LSTM and its dz’agmms
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The network takes in three initial inputs, the input of the current time step, output
from the previous LSTM unit if any, and the memory of the previous unit. Outputs,
H; - output of current network, and C} - the memory of the current unit. [23]

The various steps of the network decide what information is thrown away from the cell
state, through use of a ’forget gate’ which is influenced by the calculations of sigmoid
memory gates which influence how much of old and new memory is used C;_1, H; 4
and X;, and merged based upon importance. The section of the cell that controls
the outflow memory H; and C; determines how much of the new memory should be
used by the next LSTM unit. For a more in-detailed explanation of exactly how the
calculations are made see [22],[23] and [24].

As mentioned in the foremost section of related work the use of an LSTM network
would be optimal for the given problem domain over the use of machine learning
algorithms, for time-series data. As detailed above, LSTMs are widely used for time-
series data forecasting due to being able to remember previous data and weights over
long sequence spans|22][25]. The flexibility of LSTMs such as many-to-many models,
useful "to predict multiple future time steps at once given all the previous inputs” due
to use of look-back windows and control of multiple 3D input parameters.|25]

Keras and TensorFlow

TensorFlow is an open-source numerical math computational library framework for
dataflow differentiable programming, primarily used for machine and deep learning ap-
plications such as neural networks. TensorFlow bundles various machine learning and
deep learning models and algorithms into one package for the Python language, but
executes as byte code executed in C++ for performance. TensorFlow provides a range
of conveniences to developers for the types of algorithms it supports such as debug-
ging models and modifying graph operations separately instead of constructing and
evaluating all at once, and compatibility to execute on CPUs or GPUs [26]. However,
TensorFlow’s implementation and API, although provides an abstraction for develop-
ment for machine and deep learning algorithms and simplifies implementation, it isn’t
all too friendly to programmers to use, especially new developers to the field of machine
and deep learning.

Keras is a high-level built to run atop of deep learning libraries such as Tensorflow and
Theanos - another deep learning library similar to Tensorflow. It is designed to further
simplify the use and application of such deep learning libraries thus making implement-
ing a neural network and similar supported algorithms friendlier to developers working
in Python. It accomplishes this by being a modular API; neural layers, cost functions,
optimisers, activation functions, and regularisation schemes are all standalone features
of the API that can be combined to create functional or sequential models. Due to be-
ing a high-level API for a more refined and more natural development of deep learning
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libraries, it does not provide these low-level operations and algorithms; Keras relies on
a back-end engine such as TensorFlow and supports a wide range of others.

Optimisers

There are three distinct optimisers used for LSTM networks; ADAgrad optimizer,
RMSprop, Adam. The role of an optimiser All three of which is a type of Stochastic
Gradient Descent, which 0 (weights of LSTM) is changed according to the gradient of
the loss with respect to §. Where « is the learning rate and L is the gradient loss. [27]

0t+1 = 9,5 - O{(SL(et)

This is primarily used in recurrent LSTM neural networks to adjust weights up or
down depending on which would reduce the error, see RNN section for non LSTM
limitations. The concept of using momentum p in stochastic gradient decent helps
to negate significant convergance and divergance during calculation of the weights
and dampens the oscillation, by increasing the speed of the learning rate upon each
iteration. [2§]

Orp1 = 01 + Vi4q
where

Utr1 = U — Oé(;L(HJ
[28]

e Adagrad (Adaptive Gradient): Is a method for adaptive rate learning through
adaptively changing the learning parameters. This involves performing more
substantial updates for infrequent parameters and smaller updates for frequent
parameters. This algorithm fundamentally eliminates the need to tune the learn-
ing rate of the neural network manually and is well suited with sparse data in a
large scale network. [28]

n
Ot = 0, + Vpy g —ee— -
t+1 t t+1 G, te gt

(G is the sum of the squares of the past gradients to )
e RMSProp (Root Mean Square Propagation): Aims to resolve Adagrads radically

diminishing learning rates by using a moving average of the squared gradient.
Thus utilises the magnitude of the recent gradient descent to normalise it, and
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gets adjusted automatically by choosing different learning rate for each parame-
ter. [29]

n
"Gt
\/(1 —V)gi + Vg + €

‘9t+1 = 9t -

(v - decay that takes value from 0-1. g, - moving average of squared gradients)

[30]

e Adam (Adaptive Moment Estimation): Also aims to resolve Adagrads diminish-
ing learning rates, by calculates the adaptive learning rate for each parameter.
Being one of the most popular gradient descent optimisation algorithms, it esti-
mates from the 1st and 2nd moments of gradients. Adam implements the expo-
nential moving average of the gradients to scale the learning rate of the network
and keeps an average of past gradients. [31]

my = Py + (1 — B1)g:
v = Povy1 + (1 — 52)9152

The algorithm updates the moving averages of the gradient (m;) and the squared
gradient (v;) which are the estimates of the 1st and 2nd moments respectively.
The hyperparameters ; and [y control the decay rates of the moving averages.
These are initialised as 0 as a biased estimations for the initial timesteps, but an
become bias-corrected by counteracting them with;

- my
my =
1—pt
and
- (%
V¢ =
1—p4

Thus the final formula for the Adam optimiser is;

—

nmy

\/'l_i)t—‘—e

Diederik P. Kingma, Jimmy Lei Ba - Adam: A method for Stochastic
Optimization|30]

9t+1 = 9t -
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Machine Learning
Naive Bayes

To get an understanding of both how probability works and how a neural network
will predict the next hour value based on the concepts of probability, using a well-
established probability algorithm will aid in this understanding.

Bayes theorem works on conditional probability and is the probability of how often
an event will happen given that that event has already occurred. There are numerous
variations of the theorem such as Multinomial, which supports categorical features
where each conforms to a multinomial distribution, and Gaussian naive Bayes, which
support continuous-valued features each of which conforming to a Gaussian (normal)
distribution. The classical multinomial Bayes theorem is defined as; [32]

P(AN H) * P(H)

P(HNA) = A

and incase H and A are independant

P(HNA)=P(H)=>PHNA)=P(H)P(A)
where:

e P(H) is the probability of hypothesis being true

(
e P(A) is the probability of evidence
P(AN H) is the probability of the evidence such that the hypothesis is true

P(H N A) is the probability of the hypothesis given the occurance of evidence of
the probability

The naive approach assumes the features that are used in the model are independent
of one another, such that, changing the value of a feature doesn’t directly influence the
value of the other features used in the model. When such features are independent,
the Bayes algorithm can be expanded:

P(AN H) * P(H)
P(A)

P(HNA) =

Becomes
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P(A; N H) % P(Ay 0 H)... x P(A, 0 H) % P(H)
P(A,) % P(Ay)... x P(A,)

P(HNA,..A,) =

Probability of Likelihood of evidence x Prior

Probabilit Out NEwvid =
robability of Qutcomen Evidence Probability of FEvidence

The naive Bayes approach has many applications, especially for the topic of this project
in classifying the probability occurrence of the next price. Although it is a robust
algorithm has its drawbacks which make it not as suitable as a neural network for the
given need of this project. The naive Bayes trap is an issue that may occur due to the
size of the dataset that will be used. There are however other scenarios this algorithm
could be used such as classification of spam data.|[32]

Random Forest
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Solution Approach

This section will outline the solution intended to solve the problem that the problem
statement identifies, with justification and reference to the research conducted in the
literature review. This will lay out the development process for the project and will
tools and technologies will be explained for the particular use case in this project.

Data gathering

This will be the part of the system that will gather price data and tweets from relevant
sources, Twitter and cryptocurrency exchanges.

Price data

Historical price data can be collected in a number methods, one being that of the
exchange APIs, another through a historical price tracker who creates a CSV consist-
ing of all prior historical data. Both have their merits and reliability for granting the
needed data; however, a historical tracker who has been tracking the price every hour
since the start of Bitcoin would be the better option. This is due to a couple of factors,
the data in some historical trackers are an average unbiased price for Bitcoin - they
track the price of all or a select few exchanges and average the hourly price. Whereas
if the historical data was obtained directly from an exchange this would be biased and
might not represent the true price of the currency, and thus would need averaging with
other hourly prices from other exchanges. By using a historical tracker, all the data
is unbiased and averaged and readily available and doesn’t require any requests to an
API or coding needed to process data.

Live price data can be collected through the same methods, a historical price tracker
and an exchange API. However, this doesn’t work the same way; unfortunately, a
historical price tracker is not updated as frequently as exchange APIs thus wouldn’t
provide on the hour accurate data. Therefore exchange APIs will be utilised in this
case and multiple to give an unbiased average for the hourly price. Three exchanges
will provide a sufficient average, and the exchanges most likely to be used would be
the more popular exchanges such as Coinbase, Bitfinex and Gemini.

Tweets

Historical tweets can be obtained through the Twitter API, and however is not a
feature of the Tweepy package - not mentioned or method on official Tweepy Docu-
mentation [33]. The Twitter API, as explained in the Literature review, allows for
historical tweets to be extracted from the platform, 100 per request and a maximum
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of 50 requests per month. This proposes an issue with not providing enough data,
where the sentiment will need to be calculated per hour. Simply put, for a year of
hourly price data, there will be 9050 records. Therefore the equivalent will be required
for sentiment; however, the sentiment will be the average the sentiment per hour of
tweets. Using a single request with 100 tweets per hour, per hour; 905,000 tweets will
need to be extracted to provide the data required. A solution to this issue could be to
use and create multiple accounts and manually extract data from the API and merge.
Another option is the pay for the data from 3rd party companies who have access to
the Enterprise API and can pull more data, 2000 per request

cite7[8]. Due to the price for data of these 3rd parties the former could be a suitable,
but more time-consuming option.

Live tweets can be collected by two methods from Twitter, from the Twitter API
and using Twitter Python package such as Tweepy, detailed in the Literature review.
Additionally, the limitations of the Twitter API are also discussed in the literature
review which states how the Twitter API has a tiering system: Standard, Premium and
Enterprise. Each tier has different levels of access to the API and can extract varying
amounts of data from the platform. Thus concluding the section in the Literature
review, the Twitter API will not be used for the extraction and streaming of live
tweets due to it being restricted to Enterprise users. Therefore, Tweepy will be used
to set up a looping authenticated streaming solution with the Twitter API which will
allow the access of current recurring data. Natural language pre-processing will be
apart of most systems in this project. Techniques such as tokenisation, stemming,
stopword removal and character filtering will be prevalent, as these will be used to
remove unwanted data and to sanitise the data for classification.

Data pre-processing

Natural language pre-processing will be apart of most systems in this project. Tech-
niques such as tokenisation, stemming, stopword removal and character filtering will
be prevalent, as these will be used to remove unwanted data and to sanitise the data
for classification.

Spam Filtering

This part of the system will aim to detect whether or not the streamed data or the
historical data is spam - unwanted tweets that serve no purpose in determining the
opinion of the public. These types of tweets can be from advertisement - usually labelled
with #Airdrop and can contain "tickets here” and ”Token Sale”; to job advertisements
- usually containing word such as Firm, hire, hiring, jobs and careers. It is essential
to filter out and remove such data from the network as these can be seen as outliers of
the true data and will skew predictions will invalid sentiment.

30



The spam filter will use a probability-based algorithm such as Naive Bayes, other
algorithms such as Random Forest could be used, but due to this being a probability
related problem using an algorithm such as Naive Bayes would be more suitable. This
classifier will be trained on a hand created dataset containing both spam and ham
(wanted data) tweets, and should not be exclusive to either category.

Language Detection

Before performing any natural language pre-processing and spam filtering, non-English
tweets will need to be reduced. This can be introduced through various language de-
tection filtering using techniques such as ngrams alongside other natural language pre-
processing techniques to filter out non-English characters. Fortunately, both Tweepy
and the Twitter API have methods for specifying the desired language to receive tweets
in - filter=["en’] for the Tweepy streaming method and query={...,language="en’,...}
on the JSON parameters for the Twitter API. This provides a simple means of filtering
out non-English tweets, but this only filters based on region and user settings which
indicate the users desired language. Thus if a user has their region set to ’en’ or has
their desired language set also as ’en’ the tweet will be classified as English but may
contain non-English characters.

As is the case, a suitable language detection system will be implemented to identify
any tweets that contain non-English characters. Some tweet will regrettably make it
past the initial API filters; thus such a system will be implemented that will drop the
tweets if it predominately contains non-English characters. If however, the majority
of the text in English but includes some non-English characters, these will be removed
from the tweet.

Sentiment Analysis

As mentioned in the Litrature review, the VADER sentiment analysis performs excep-
tionally well on the social media domain when compared to idividual human rates and
10 other highly regarded sentiment analysers, stated in the results section of the paper
VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media
Text [12].

Extraction of results from paper [12]:
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Analyser Overall Precision | Overall Recall | Overall F1 Score
Ind. Humans 0.95 0.75 0.84
VADER 0.99 0.94 0.96
Hu-Liu04 0.94 0.66 0.77
SCN 0.81 0.75 0.75
GI 0.84 0.58 0.69
SWN 0.75 0.62 0.67
LIWC 0.94 0.48 0.63
ANEW 0.83 0.48 0.60
WSD 0.70 0.49 0.56

Analysis of Social Media Text (4,200 Tweets)[12]

Due to the suitability for the given domain of social media and with the customisability,
due to VADER’s lexicon-dictionary based approach, makes this sentiment analyser
most suitable for use in this project. This analyser will be utilised as the sentiment
analyser of this project due to its feature set and need for little data pre-processing
before polarity classification of the provided text. [11] ”is a widely used approach to
sentiment analysis in the marketing research community, as it does not require any
pre-processing or training of the classifier.”.

This will be an intermediate system between the neural network and the data collection
pre-processing system, as the later will provide the cleaned processed data for analysis
and the former to feed in the classified polarity of each tweet alongside price data for
model learning.

Neural Network

The Neural Network section in the literature review details how Recurrent Neural
networks work alongside how a Long-short term memory networks build upon and
overcome limitations and known issues with a standard RNN network. A recurrent
neural network is the focus of this project, and this is due to:

e Nature of an RNN - Allows for backpropagation to find partial derivatives of
the error with respect to the weights after an output has occurred, to tweak the
current weights of the LSTM cell. In short, allows the tweaking of weights of the
network based on previously seen data by looping the same node thus influencing
decisions made on current data based on old weights and errors from previous.

e Nature of an LSTM over RNN - LSTMs are extensions of RNNs [22] that were
designed to avoid long-term dependency problems such as exploding and vanish-
ing gradients. Weights are not only just reused but are stored in memory and
are propagated through the network.

32



e Lack of use for the project’s purpose - Other papers tend to focus on machine
learning techniques, other neural networks such as Multi-layer Perceptron (MPL)
and standard Recurrent Neural Networks, with use of time-series data. Especially
with the use of a standard RNN, not overcoming its common issues with gradient
descent. Stated in related research section of the literature review, [5] - “using
the MLP classifier (a.k.a neural networks) showed better results than logistical
regression and random forest trained models”

e Prior use for time-series data and data forecasting - Although RNN LSTM net-
works have been used for the prediction of Bitcoin price there are a few papers
on this [25]. Regardless, LSTMs have been notably used with use for time-series
data forecasting due to being able to remember previous data and weights over
long sequence spans [|25] - “adds a great benefit in time series forecasting, where
classical linear methods can be difficult to adapt to multivariate or multiple input
forecasting problems”.

Therefore, a recurrent long-short-term memory neural network will be used for this
project to predict the next hour interval of Bitcoin price based on previous historical
prices and hourly sentiment. This system will read in historical data, both price and
sentiment - depending on the network for prediction with and without sentiment, this
data will be merged, split and used to trained and test the network model for use for
forecasting prices. The relative sizes for the training and test data can be decided
upon system creation, but the standard sizing for training neural networks is 75:25
respectively.

Tensorflow will be used for the network implementation, and the Keras API use upon it
to make development more straight forward. Other tools are comparable to TensorFlow
that are also supported by Keras.

Framework Pros Cons
Supports reinforcement learning and other algorithms Doesnt support matrix operations
Offers computational graph abstraction Doesn’t have pertained models
TensorFlow Faster compile time than Theano Ders to Python to load each new training batch
Data and model parallelism Doesn’t support dynamic typing on large scale projects
Can be deployed over multiple CPUs and GPUs
Computational Graph Abstraction Is low-level

Has multiple high-level wrappers similar to Keras Can only be deployed to a single GPU

Theano Much slower compile times on large models than competition

Unhelpful and vague error messages
Development ceased in 2017

Graph definition is more imperative and dynamic than other frameworks Not as widley adopted as TensorFlow
Pytorch Graph computation defined at runtime, allowing standard popular IDEs to support it Visualisation is not as robust as TensorBoard
Natively support common python deployment frameworks such as Flask Not as deployable as TensorFlow, doesn’t supper gRPC

Comparison between TensorFlow, Theano and Pytorch|34]

Due to the continued support and development of TensorFlow, the board community
and support of a high-level wrapper - Keras, this library will be used for this project.
Although, Pytorch is a good alternative it is not as easy to use as implement when
compared to TensorFlow using Keras.
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Price Forecasting

This part of the system will be responsible for prediction the next time-step of Bitcoin’s
price for the next hour based on past data. It will use the trained model from the
neural network to predict the future hour price when given live hourly data, price
and sentiment. The system will also have a look back of 5 which will allow it to see
historical data to aid in the predictions. This will occur on the hour every hour when
new data is received and processed, this data will also be merged and the split into
training and testing data. The sizing can be decided upon system creation, but the
standard sizing for training is 75:25, training and testing respectively.

Frontend Application

The frontend application will display the predicted data to the stakeholders and users
of the system, along with charting True hourly prices against Predicted, for both with
and without sentiment embedded in the predictions. The interface will display this data
in both tabular and chart form to provide variety to the user. Performance metrics
will also be displayed at the bottom of the application to show the accuracy of the
model. Due to this project focusing around the backend, how the predictions are made
and the accuracy of the model, the interface will be somewhat of a second thought. It
will aim to display the information in a clear and concise manner which will start to
solve the problem of providing a system to the public to aid in investment decisions.
The design will not be complicated but more basic and functional. Therefore a basic
webpage coded in HTML with Jquery to plot data, and Ajax requests to obtain and
load data, will be sufficient.

With reference to Initial PID

Both the problem and solution have changed considerably from the original project
initiation document (PID), which outlines the initial ideas, objectives and specification
for the project. The reason for this was due to a change in direction which was caused
by a number of factors; one being a change in passion after initial research into machine
learning techniques and neural networks, instead of creating an application that just
performed sentiment analysis the direction turned towards how this could be used to
predict future prices. This change does still loosely keeps in-line with the initial idea
of wanting to create a platform that will aid in investor decision making but takes it a
step further by directly giving them predictions on market direction price as a basis for
these decisions rather than just identifying opinion direction of the market. Another
point was the simplicity of the initial idea, which consisted of focusing more work on
the design of the frontend application to display opinion data and general price data
on a range of cryptocurrencies which will only by consuming exchange APIs. Both the
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developer and project supervisor concluded that this initial idea was too simple and
a more sophisticated approach needed forming. The initial PID did, however, give an
initial basis to base ideas and initial research from and was the beginning drive of this
project.

Solution Summary

The overall solution, concerning the problem statement, is to create a system mainly
consisting of; a frontend application that will display plotting, predicted and true, per-
formance metric data to the user as a clear and concise form. The backend system
behind the price forecasting will consist of various subsystem responsible for data col-
lection, filtering, data pre-processing, sentiment analysis, network training, validation
and training and future price predictions. Each stage will consist of relevant tools and
techniques for performing their required task.

35



Data flow Overview

To get an understanding of how the system will be put together, a dataflow diagram

is a useful method for view how systems are integrated

flow through a system.

and how data could possibly
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Figure 3: Basic Dataflow diagram of systems in the project and how data could

possibly flow
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System Design

Dataflow Designs

This section will describe and outline how the system will be formed and will work with
each component; a useful way of displaying this is as a dataflow diagram. A dataflow
is a way of representing the flow of data through a process or system; as a result, it
also provides information about how inputs and outputs of each component work and
how they function with other components. It can also give either broad or in-depth
overview of the specific workings of each component through how the data is processed
and manipulated.

Dataflow overview of entire system:

Figure 4: Overall Dataflow diagram of the entire system

This dataflow diagram shows the overall concept of how the data is intended to flow
through the system, from being processed and manipulated through each component
and what the outputs are of each. Due to the size, this will be broken up and individ-
ually explained.
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Figure 5: Data collector Dataflow diagram

This dataflow diagram shows the part of the system responsible for the collection and
processing of both historical data. This is split into three parts: Price collector, Tweet
collector and tweet normalisation and natural language pre-processing.

e Price Collector - Processes two forms of data, Historical and Live price data.

Historical data is extrapolated from three CSVs that contain the historical
price every hour for the past year, from a historical price tracker. At this point
in the project, it was identified that historical price trackers do not average the
price data from exchanges as previously identified; therefore this data will need
to be merged and averaged to create the unbiased hourly price needed.

Live data is extracted directly from the three exchanges APIs shown through
REST endpoint requests.

Data from both, as separate processes independent from one another, are
averaged by extracting the High, Mid and Low hourly prices. This averaged price
per hour for each exchange are then averaged together to obtain an unbiased
hourly average. The price is then saved to a CSV of historical or live prices
respectively. The difference in the flow of data is that of Live prices, in which
the process is looped every hour to extract the new hourly prices.

e Tweet Collector - Streams tweets from Twitter using T'weepy, historical tweets
are manually collected directly from the Twitter API. Both are fed through the
normalisation and data pre-processing stage.
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e Data pre-processing - This involves cleaning the initial data by removing line
breaks and new lines that occur in the data, removal of special characters that
are standard in tweets ('#’,”" and urls). The data is then fed into a language
detection system which tokenises and compares stopwords in the text to NLTK
package supported languages. Depending on whether the text is identified as be-
ing predominately English or not determines whether or not the tweet is dropped
and not used in the network. If the majority is in English, non-English characters
are removed as these can still be present in the text.
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Figure 6: Analysis Engine Dataflow diagram

This dataflow diagram shows the part of the system that is responsible for training
a spam filter, creating the model that’ll be used to identify if the tweets from the
data collector are unwanted - spam. This system is also responsible for assigning
the polarity classification to the tweet through sentiment analysis conducted by the
VADER package [12].

e Spam filter training - The initial step in this system is to train the Naive Bayes
Classifier using the pre-labelled spam dataset which contains an unbiased amount
of either spam or ham tweets with their respective labels.

This data is split into two samples, training and test sets 75:25 respectively
and the Naive Bayes classifier trained and validated against these datasets after
pre-processing of the data occurs on the data to prepare it.
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e Data pre-processing - The tweets from both training and testing the filter and
from live and historical tweets are processed through this section.

This section of the system is primarily used to process the tweets for the filter
to classify the data and doesn’t directly modify the live and historical tweets. The
data is processed through various natural language processing techniques such as;
Tokenisation, Ngram generation, stopword removal and stemming.

e (Classifier Modelling and Model creation - Once the data is pre-processed, the
data is classified, and the prediction model created, which later used to classify
the historical and live tweets.

e Sentiment Analysis (VADER) - On a separate route from the spam filter training,
using the past and live tweets, the sentiment analyser VADER, performs analysis
on the tweets and assigns a polarity classification to each text (Negative, Neutral,
Positive and calculates the compound score which is the difference between the
negative and positive ratings compound).

e Storage - The polarity classification and tweets are then saved to their relevant
CSV files for historical and live data.

Neural Network
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Figure 7: Neural Network layout Dataflow diagram

The dataflow diagram in figure 7 shows the part of the system that is responsible for
training and creating the neural network model. The dataflow diagram shows how
the network will be trained, and the layers of a possible solution to the network. The
model shows four layers which may not be the solution that will be implemented but
is there to show a representation of a number of layers that could be applied.

e Merging of Datasets - Data from both historical datasets are merged to create
one dataset with mapped price and sentiment for each hour. *This is a specific
process that is different from the system that does not include sentiment for
predictions, the merge process doesn’t occur in that system/model.

e Training and Testing - Data is split into two samples of training and testing,
75:25 respectively. **This also doesn’t occur in the system that doesn’t model
with the sentiment.

e Training network - The training sets, X and Y coordinates are used to train the
network.
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e Testing network - The testing sets, X and Y coordinates of 25% of the initial

data are used to test the validation and accuracy of predictions as these contain
the true data of what the predictions should be.

e Outputs - Accuracy Statistics, true price data and predicted next hour prices are

outputted to respective files for use on the front-end application. The model is
then later used for hourly forecasting.
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Figure 8: Price Forecasting Dataflow diagram

The dataflow diagram in figure 8 shows how the forecasting system would be imple-
mented. This dataflow shows how it will read live data of both sentiment and price

data, merge, split and conduct regression using the trained neural network model to
predict the next hour price.

e Data merging - (Doesn’t occur with the system that doesn’t include sentiment
in price predictions). Data is consolidated from both historical and live data up
to 5 iterations. This is due to after the initial hour there will only be a singular

record of price and sentiment data, in which no prediction could be made from
this as there isn’t a sufficient amount of data.

e Prediction - This data is then fitted to the neural network model and predictions
for the next time-step hour are made.
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e Hour Loop - This will then proceed to loop every hour to make the hourly pre-
dictions. Historical price data will cease to be used when there are 5 or more live
price records.

e Outputs - Accuracy Statistics, true price data and predicted next hour prices are
outputted to respective files for use on the front-end application for charting.
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Figure 9: Front-end Application Dataflow diagram

The above dataflow diagram shows the data flow for the front-end application and
how the data is read into the system from the data files generated by the backend
application (Neural network).

e Ajax Requests - These are API file requests for files hosted on the server in which
the system is running on. This loads the data files into the application for use.

e (SS Styling - Contains design styling for page and charts, loaded upon loading
of a webpage.

e Charting and Tables - Accesses the loaded data from the Ajax requests and plots
the data. Prediction data, only with sentiment and prices are plotted into a table.
There will be separate charts and tables displaying the data from the backend
that hasn’t used sentiment in predictions to aid in establishing a correlation
between sentiment and price and whether it affects the hourly price (Aiming to
solve the problem statement)
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e Stakeholders - There will be the four stakeholders, outlined in the problem artic-
ulation section, that would be the primary users of this application.

Interface Design
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Figure 10: Interface design

Figure 10 above shows the basic idea of the interface design that will be presented to
the stakeholders and aims to be the interface that these stakeholders will use to aid
in their market decisions of Bitcoin. The interface, although simplistic, provides all
the necessary information that any of these stakeholders would need, it also provides
information to allow visual comparison on how sentiment affects the hourly price of
Bitcoin, represented as the two charts. The comparison will aid in solving the problem
statement later in the conclusion of the project.
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Implementation

This section will outline the method and process of development of this system to
satisfy the chosen solution, technical specification and the problem statement. Each
section of the system will be outlined and discussed with relevant codes snippets of
essential methods from the system to highlight the processing of data throughout.

Data collection
Price Time-Series Historical Data

Historical price data were extracted from a CSV historical price tracker, Bitcoin Charts
[35]. This tracker provided the historical data from the three exchanges used for Live
price collection - Coinbase, Bitfinex and Gemini, since the exchanges supported the
cryptocurrency. The data used spans from 2018-01-06 to 2019-01-06.

coinbase = pd.read_csv(’coinbase_btcusd.csv’)
bitfinex = pd.read_csv(’bitfinex_btcusd.csv’)
gemini = pd.read_csv(’gemini_btcusd.csv’)

coinbase . drop (columns=[” Currency”, ”724h Open (USD)”, ”24h High (USD)”, 7
24h Low (USD)”], axis=1, inplace=True)

coinbase.columns = [”timestamp”, ”price” |
coinbase [ "timestamp’] = pd.to_datetime (coinbase [ timestamp’])

coinbase = coinbase.set_index (’timestamp’).resample(’1D’) . mean() .resample
(’1H’) .mean ()

3 ... # similar code for the other 2 exchanges

5 data.set_index (coinbase [ ’timestamp ’])

for i in data:
data |’ price’] = (coinbase| ’price’][i] + gemini| price’][i] + bitfinex [’
price " J[i])/3

data = data.fillna (method="backfill ")
data = data.round(3)

Listing 1: Historical price collection and averaging per exchange

Due to each of the hourly prices in each CSV for each exchange were averaged from the
‘high’, 'mid’ and low prices, the data from each exchange only needed to be averaged
together. This data is averaged and then saved to a CSV containing historical prices
of Bitcoin for the past year.
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Price Time-Series Live Data

Live price data, as described in the solution approach, were extracted every hour from
three exchanges - Coinbase, Bitfinex and Gemini were chosen for providing this data
due to being the most popular exchange platforms that provide an API for retrieving
live price data.

Key packages used:

import requests

3 from coinbase.wallet.client import Client

N

from dotenv import load_dotenv

from pathlib import Path

env_path = Path(’.’)/ ’data_collector/prices/config/coinbase.env’
load_dotenv (dotenv_path=env_path)

Requests was used to make the API endpoint calls to obtain the response that con-
tained the three prices for the hour needed.

The Coinbase package was mandatory for establishing a connection with the Coinbase
API, and regardless this exchange was still used as it is regarded as the most popular
exchange to the general public with one of the highest flow of traffic through the site
to purchase cryptocurrencies.

Both the dotenv and pathlib packages were used to extract the API keys - access
and secret keys, from the relevant ’.env’ file used alongside the Coinbase package for
connection to the Coinbase API.

The ’high’, ‘'mid’ and low prices were extracted from the endpoint response and aver-
aged to provide an overall hourly price per exchange.

def coinbase():

api_key = keys().api_key
api_secret = keys().api_secret

try:
client = Client (api-key , api_secret)
repsonse = client.get_spot_price(currency_pair = BTG-USD’)
price = (float (repsonse [’ ’amount’]))
price = round(price, 3)
return price

except KeyError as e:
print ("Error: %s” % str(e))
sys.stdout . flush ()
price = 0
return price
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def bitfinex ():

try:
response = requests.request ("GET”, ”https://api.bitfinex.com/vl/
pubticker /btcusd”)
response = json.loads(response.text)

price = (float (response[’low’])+ float (response| 'mid’]) + float (
response [ “high’]))/3
price = round(price, 3)
return price
except KeyError as e:
print (" Error: %s” % str(e))
sys.stdout . flush ()
price = 0
return price

def gemini():
... # Exact code to bitfinex ()

Listing 2: Extraction of Price from exchanges

The above code shows how this was implemented as a system for the price extraction
from the APIs.

These functions are called every hour by a master function which uses the averaged
price from each exchange to average and creates a fair, unbiased hourly price, which is
the saved to a CSV containing the live unbiased price for the hour along with the time
of creation. The below code shows how this is implemented:

def collector (priceCSV, fieldnames):

now = datetime .now ()
coinbase P = coinbase ()
bitfinex_P = bitfinex ()
gemini_ P = gemini ()
if coinbase.P = 0 or bitfinex_ P = 0 or gemini_.P = 0:
if coinbase_ P and bitfinex_ P =— 0:
averagePrice = gemini_P
return
elif coinbase_ P and gemini_ P = 0:
averagePrice = bitfinex_P
return
elif bitfinex_P and gemini P = 0:
averagePrice = coinbase_P
return

averagePrice = (coinbase_ P + bitfinex_ P + gemini_P)/2
else:
averagePrice = (coinbase_.P + bitfinex_ P + gemini_ P)/3
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averagePrice = round(averagePrice, 3)

Listing 3: Creation of the unbiased hourly price

Historical Tweet Collection

Historical tweets were obtained directly from the Twitter API through a simple Curl
command for the given date range of the past year. Multiple accounts were created to
obtain the amount of data needed, as detailed in the data gathering section under the
solution approach. Due to the vast amount need, 5 tweets averaged per hour for the
past year would require 1.2 requests per day (40320 total to get a whole year’s worth),
totalling 9,050,000 tweets. As this was highly unfeasible with the API access available
for this project, 1 tweet per hour (25 per day, 1 request per 4 days) was obtained rather
than the average, which resulted in only 92 requests needed to get the required data.
curl —request POST \
—url https://api.twitter.com/1.1/tweets/search/fullarchive/boop.json \
—header ’authorization: Bearer TOKEN' —header ’'content—type:
application/json’ \
—data ’{” query”: ”bitcoin”, "maxResults”:100, ”fromDate
7:7201904050000”, "toDate”:7201904050200”}’ —o data_collector/twitter/

temp_hist_tweets.json \
&& python3 data_collector/twitter/sift_text.py

Listing 4: Sample Curl request - data saved to json and python scripted called to
process data

These tweets are processed through the spam filter to detect if they were included
unwanted text, cleaned and a polarity classification assigned to each for each hour. The
process of how both the spam classification, pre-processing of the data and polarity
classifications work will be detailed in their relevant sections of the system below.

import tweet_collector +## pre—processing functions
import spam_filter ## spam filter classification

3 import analysis_engine.sentiment_analysis as sentiment_analysis
1+ ## Sentiment analysis and polarity classification (symbolic link to file)

def processTweet (tweet, tweetFilter):
now = datetime.datetime .now ()
#Data preprocessing
removedLines = tweet_collector.utilityFuncs (). fixLines (tweet)

removedSpecialChars = tweet_collector.utilityFuncs () .cleanTweet (
removedLines)
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removedSpacing = tweet_collector.utilityFuncs ().removeSpacing (
removedSpecialChars [0])
tweetLength = tweet_collector.utilityFuncs ().checkLength(removedSpacing

)

if tweetLength =— True:
## Drop tweet if too short

##Check if the tweet is predominantly English
checkIfEnglish = tweet_collector.utilityFuncs ().detectLaguage(
removedSpecialChars [0])

if checkIfEnglish = True:
## Remove non—English Characters

tweetText = tweet_collector.utilityFuncs ().remove_non_ascii(
removedSpacing)
print (" Cleaned Tweet: 7, tweetText)

sys.stdout. flush ()
cleanedTweet = tweetText+’ ’+removedSpecialChars[1]

## Check with spam filter — drop if classified as spam

classification = tweetFilter.testTweet(cleanedTweet)
if classification = False:
## Perform Sentiment Analysis
ovSentiment , compound = analyser.get_vader_sentiment (cleanedTweet
)
try:
## Save to historical tweets file
with open(’data_collector/historical _tweets.csv’, mode="a’) as
csv_file:
writer = csv.DictWriter (csv_file , fieldnames=[’created_at’, ’
tweet ’, ’sentiment’, ’compound’])
writer . writerow ({ "created_at ’: now.strftime ("%Y—%m%d YH:%M" )
, 'tweet’: cleanedTweet, ’'sentiment’: ovSentiment, ’compound’:

compound })
return True
except BaseException as exception:

print (" Error: %s” % str(exception))
sys.stdout. flush ()
return False

else:

# other finished else statements with print statements

Listing 5: Sift-text python script - used alongside Curl command in Listing 4

As detailed in the comments for the code, this function conducts multiple methods
on the data, all of which are predefined in other files. These are not redefined in this
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function to reduce code duplication throughout the system and hence are imported at
the beginning of the file. Due to the nature of spam filtering tweets were inevitably
removed; therefore a few hours were missing data. This resolved by making another
request for that specific hour and averaging the sentiment for the given hour to fill
missing data.

Live Tweet Collection

Live tweets were obtained through the use of the Tweepy package to stream current
tweets per hour from the Twitter API. Spam filter detection,, data pre-processing and
language detection are also conducted on this data and are defined within this python
script tweet_collector.py’, these functions will be described in the relevant sections in
Data processing section.

When this script, ‘tweet_collector.py’, is ran it firstly initialises the CSV files for storing
tweets and tweets that have been assigned polarities by the VADER. More importantly
it initialises the spam filter and trains it based on the pre-labelled spam dataset.

## In __main__ when script is first ran

tweetFilter = filterSpam (training_set)
tweetFilter.trainFilter ()
## Initialise with loaded training_set and train

prediction = tweetFilter.testData_Prediction ()
# test classification model with test tweets

tweetFilter. filterStatistics (prediction)
# Print metric accuracys for test data

tweetFilter.testPrediction ()
# Test classifier with hard specified tweets — to check if it correctly

classifies
Listing 6: Spam filter initialisation and training functions

Said functions relate to a function defined under the filterSpam class which are used
to create the training and test datasets. This function will be described in the Spam

Filtering section below.

The streaming of tweets are handled by the Tweepy package and is first initialised upon
starting of the python script. The streaming method works by establishing a listener
and authenticated with the Twitter API; it then listens on that connection for data.
This streamer can also filter on language and a specified hashtag which is loaded from
a ’.env’ file also containing the API keys for authentication.
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...# in __main__ #Code ran first on script run
twitter_streamer = Streamer ()
twitter_streamer.stream_tweets(tweets_file , temp_tweets, hashtag,
tweetFilter , analyser)

/]

i
class Streamer():

def __init__(self):
pass
# Initialise stream object

def stream_tweets(self, tweets_file , temp_tweets, hashtag,
tweetFilter , analyser):

listener = Listener (tweets_file , temp_tweets, tweetFilter , analyser
)

auth = OAuthHandler (keys () .api_-key, keys().api-secret)
# Load API keys from env file and set auth

print (" Console: 7, ”Authorising with twitter API”)
sys.stdout. flush ()

auth.set_access_token (keys().access_token, keys().access_secret)
# Set access keys

print (" Console: 7, ”Streaming Tweets”)

sys.stdout . flush ()

stream = Stream (auth, listener , tweet-mode=’extended’)

stream . filter (languages=["en” ], track=hashtag)

## Execute streamer and filter for only English region tweets and
by specified hashtag (’Bitcoin’)

Listing 7: Tweepy Streamer setup

Once the listener and streamer are declared, and Tweepy begins listening all data is
processed through the on_data method. In this function, the tweet is extracted from
the response and performs data pre-processing, language detection, spam classification
and sentiment analysis on the data. Additionally, there is an initial time interval that
checks for a time limit - this is used to ensure that the script runs for just under an
hour and restarts every hour. This allows the average of the gathered tweets’ sentiment
to be summed for that hour and then used for the network price predictions.

The tweet text can be nested in multiple attributes in the response; this depends on a
few factors of what the tweet is and how it was posted on Twitter. If a user retweeted
the tweet, the text of the tweet would be nested under ‘retweeted_status’ in the JSON
response, also there is a check to see if the tweets are above the original twitter tweet
character limit (140 characters). This is a possible legacy parameter in the Twitter
API but is checked upon data response. If an attribute ‘extended_tweet’ exists the
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character limit for the tweet exceeds 140 but is under the 280 characters hard limit of
Twitter, this exact filtering is the same if it in a non-retweeted tweet.

import spam_filter

import analysis_engine.sentiment_analysis as sentiment_analysis
from tweepy import OAuthHandler

from tweepy import Stream

from tweepy.streaming import StreamListener

import csv

def on_data(self, data):
## Check time limit for under an hour — if limit reached kill script
if (time.time() — self.start_time) < self.limit:

now = datetime.now() + timedelta(hours=1)
## Sets current time, add 1 hour due to script finished before the
completed hour is finished

data = json.loads(data)

# Tweet Extraction from response
try:
# Check if tweet is a retweet
if ’retweeted_status’ in data:
if ’extended_tweet’ in data[’ retweeted_status’]:
#if tweet is over the 140 word limit

text = data| ' retweeted_status’|[ extended_tweet’ ][ full_text ’]

print (" Uncleaned Tweet:”, text)
sys.stdout. flush ()
else:
text = data| retweeted_status’][ text’]
print (” Uncleaned Tweet:”, text)
sys.stdout. flush ()
else:

# Else if a normal Tweet

if ’extended_tweet’ in data:
# If tweet is over 140 word limit
text = data| extended_tweet’ ][’ full_text ’]
print (" Uncleaned Tweet:”, text)
sys.stdout . flush ()

else:
# Else if not found in nested attributes look in top—level
text = data| text ]
print (" Uncleaned Tweet: 7, text)
sys.stdout. flush ()

# Data cleaning and pre—processing prior to polarity classification

removedLines = utilityFuncs (). fixLines (text)
removedSpecialChars = utilityFuncs () .cleanTweet (removedLines)
removedSpacing = utilityFuncs ().removeSpacing (removedSpecialChars
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[0])
tweetLength = utilityFuncs().checkLength(removedSpacing)

# Check if tweet is long enough to perform polarity classification
on (> 5 words (checked through tokenisation))
if tweetLength =— True:
checkIfEnglish = utilityFuncs () .detectLaguage (removedSpecialChars
[0])
# Check if the text in tweet is predominatly English , if not drop
if checkIfEnglish = True:
tweetText = utilityFuncs().remove_non_ascii(removedSpacing)
print (7 Cleaned Tweet: 7, tweetText)
sys.stdout. flush ()

# re—combine emojis onto end of tweet (Due to VADER supporting
emoticon sentiment assignment)
cleanedTweet = tweetText+’ ’'+removedSpecialChars|[1]

## Check if spam, drop if classified as such
classification = self.tweetFilter.testTweet (cleanedTweet)

if classification = False:
## Perform Sentiment Analysis using VADER
ovSentiment , compound = self.analyser.get_vader_sentiment (
cleanedTweet )

# Save date/hour, tweet text, highest sentiment score from
Positive or Negative and compound score
try:
# temp file which is used at end of hour streaming to
average sentiment for hour
with open(temp_tweets, mode="a’) as csv_file:
writer = csv.DictWriter (csv_file , fieldnames=
temp_fieldnames)
writer . writerow ({ "created_at ’: now.strftime ("%Y—%m%d %H
IM%S” ), Ttweet ’: cleanedTweet , ’sentiment’: ovSentiment, ’compound’:
compound })
except BaseException as exception:
print (?1 Error: %s” % str(exception))
sys.stdout. flush ()

# Save date/hour, tweet text, highest sentiment score from
Positive or Negative and compound score
try:
# tweet file for storing all collected tweets from every
hour
with open(tweets_file , mode="a’) as csv_file:
writer = csv.DictWriter (csv_file , fieldnames=
fieldnames_tweet )
writer . writerow ({ "created_at ’: now.strftime ("%Y—%m%d %H
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IM%S” ), "tweet ’: cleanedTweet , ’sentiment’: ovSentiment, ’compound’:
compound })
except BaseException as exception:
print (72 Error: %s” % str(exception))
sys.stdout . flush ()
else:
print (” Console: 7, "Tweet is spam. Not storing tweet in
dataset”)
sys.stdout . flush ()

... # Closing Else statments with print statments for when the
tweet doesn’t meet criteria

Listing 8: Tweepy Stream: ’on_data’ method

As for key facts about this function; the tweets length is checked to be above 5 (to-
kenised) due to any tweets will less words do not contain enough information to be
given a proper polarity classification and almost always returns as 100% neutral, which
is of no use and will have no affect on the hours average sentiment. Entire code in
the function is encapsulated in a try catch to check if data was recieved and handles
non-responses and missing data by simply ignore that there was no data, unless a
connection between the streamer and API is broken it otherwise exits the script.
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Data processing
Preprocessing

Various techniques and tools have been utilised throughout the development of the
system to process the data appropriately so it can be parsed by VADER, spam filter
and neural network. This section will cover the crucial functions that provide such
functionalities and that are called throughout the system, as seen in some of the above
code snippets.

import re
import emoji as ji
class utilityFunecs():
def cleanTweet (self , text):
# Function to clean tweets, removes links and special characters
return re.sub(r’(["0—9A—Za—z \—\%\ \$ \t])|(Q[A-Za—z0—-9]+)|(http\S+)
T, 77, text), 7 .join(c for ¢ in text if ¢ in ji.UNICODEEMOJI)

def removeSpacing(self , text):
return re.sub(r’( +)’, 7 7, text)

def fixLines (self, text):
return re.sub(r” ([\r\n])”, 7 7, text)

def remove_non_ascii(self, text):
return ’’.join (i for i in text if ord(i)<128)

Listing 9: Basic data filtering and processing function - defined in 'tweet_collector.py’

Text Cleaning
Ngram based Language detection filtering

Spam Filtering
class filterSpam (object):
def __init__(self, training_set):
self.training_set = training_set

## initialises function and globalises training set for wuse in
every function where needed
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def trainFilter (self):

self . dataset () ## Split dataset 75:25
self.train () ##4 Train based on training dataset

def dataset(self):

self.data = pd.read_csv(self.training_set)

self.data[’class’] = self.data[’ classes’].map({’ ham’: 0, ’spam’:

1})

# Remap labels of ’'Spam’ and ’Ham’

to 1:0 respectively

self.data.drop ([ classes’], axis=1, inplace=True)

# Drop old labels

self . trainIndex , self.testIndex = list (), list ()
for 1 in range(self.data.shape[0]):

if np.random.uniform (0, 1) < 0.75:

# Random shuffle data of 75%

self.trainIndex += [i] # Create training index

else:

self.testIndex += [i] # Create testing index
self . trainData = self.data.loc[self.trainIndex]
self.testData = self.data.loc[self.testIndex]

# Define datasets by getting values from first 75% and then 25%

self.trainData.reset_index (inplace=True)
self.testData.reset_index (inplace=True)

# Reset indexes

self.trainData.drop ([ ’index’], axis=1, inplace=True)
self.testData.drop ([ ’index’], axis=1, inplace=True)

# Drop old index

def train (self):

self .spamFilter = spam_filter.classifier (self.trainData)

# Initialise the spam filter

self.spamPFilter. train ()
# Train

with

def testData_Prediction(self):
prediction = self.spamFilter.predict (self.testData[ tweet’])

return prediction

def testPrediction (self):

the 75% dataset

# Test Spam/Ham tweets — should return True and False respectivly
spam = spam _filter.processTweet (”Earn more than 0015 btc free No
deposit No investment Free Bitcoins — Earn $65 free btc in 5 minutes

bitcoin freebtc getbtc”)

56



ham = spam_filter.processTweet(” Bitcoin closed with some gains in
month of February”)

hamTweet = self.spamFilter. classify (ham)
spamTweet = self.spamFilter. classify (spam)

b2

print (” Console: ”Spam Tweet — 7, spamTweet)

sys.stdout. flush ()
print (" Console: 7, "Ham Tweet — 7, hamTweet)
sys.stdout . flush ()

def filterStatistics (self, prediction):
spam _filter . metrics(self.testData[’ class’]|, prediction)

def testTweet(self, tweet):

processed = spam_filter.processTweet (tweet)
classified = self.spamFilter.classify (processed)

return classified
Listing 10: Spam filter training Class

Naive Bayes model

Sentiment Analysis

VADER

Recurrent Neural Network - LSTM
Training and Testing Model

Dropouts?

Scoring and Validation

Loss?
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Future Prediction Forecasting
Main File ’Main.py’

Miscellaneous

API keys for accessing the Twitter API - use by Tweepy to access said API, along
with loading the defined hashtag filtering. This parameter allows for the streaming
of the hashtag specified, as for this project it is set for the #Bitcoin’ and "#bitcoin’
hashtags.

if __name__ =— ’__main__":

hashtag

keys () .currency_-hashtags
hashtag ’

hashtag.split (7, )

Listing 11: keys class - loads API keys for access
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Testing Metrics and Accuracy

mean bias Error
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Project Evaluation

Reflection

Quality

Discussion: Contribution and Reflection

Limitations
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Conclusion and Future Improvements

Conclusion

Future Improvements

Shifting the intial data by and hour and sequencing over previous data - will also allow
proper use of look-back windows

Another could be to predict the hour of sentiment and create a threshold for it.
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SECTION 1 - General Information

Project Identification

Project ID
(as in handbook)

N/A

Project Title

Cryptocurrency market and value prediction tracking

Briefly describe the main purpose of the project in no more than 25 words

To provide a means to predict the value of cryptocurrencies that will aid in investor decision making
in investment of the market

Student Identification

14 Student Name(s), Course, Email address(s)
e.g. Anne Other, BSc CS, a.other@student.reading.ac.uk

Andrew William Sotheran
BSc CS
Andrew.sotheran@student.reading.ac.uk

Supervisor ldentification

Primary Supervisor Name, Email address
e.g. Prof Anne Other, a.other@reading.ac.uk

Secondary Supervisor Name, Email address
Only fill in this section if a secondary supervisor has been assigned to your project

Company Name

N/A

Company Address

N/A

Name, email and phone number of Company Supervisor or Primary Contact
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SECTION 2 — Project Description

2.1

Summarise the background research for the project in about 400 words. You must include
references in this section but don’t count them in the word count.

To create a tool that aims to predict the price of cryptocurrencies that aids in investor decisions.
Research will need to be conducted into the following topics that surround data mining, machine
learning and artificial neural networks.

This research will consist along the lines of;

Natural Language processing and analysis — To analyse and process fed in data gathered through RSS
data feeds and social media feeds, through the underlying tasks of Natural language processing.
Content categorisation (search and indexing, duplication detection), Topic discovery and modelling
(Obtain meanings and themes within the data and perform analytic techniques), sentiment and
semantic analysis (which will identify the mood and opinions within the data), summariser (to
summarise a block of text and disregard the rest).

Machine learning algorithms: The three types of machine learning (Supervised, Unsupervised and
Reinforced)

The types of common algorithms used, each of these will be researched to identify the most suitable
for this project and only one will be used: (Linear Regression, Logistic Regression, Decision Tree,
SVM, Naive Bayes, kNN, K-Means, Random Forest, Dimensionality Reduction Algorithms,
Gradient Boosting algorithms (GBM, XGBoost, LightGBM, CatBoost).

Artificial Neural Networks: To identify the drawbacks and benefits of using them or other
computational models within machine learning. Recurrent Neural networks and 3rd generation
Neural Networks.

Data mining: To investigate the different techniques and algorithms used (Same as the ones listed
above for machine learning including C4.5, Apriori, EM, PageRanks, AdaBoost and CART) these
will be researched and the most appropriate identified.

To investigate techniques: for storing and processing large amount of data, such as Hadoop,
Elasticsearch utilities, Graphing and data modelling and visualisation.

To identify appropriate libraries for python or C for each of the topics above to aid in the creation of
this project. Libraries such as:

Natural Language Toolkit (NLTK) — python

Pandas - python

Sklearn - python

Numpy — python - scientific computation for working with arrays

Matplotlib - python - data visualisation

Investigate into types of databases. Sql and nosql for a storage medium between receiving data and
feeding it into the machine learning algorithm.

Investigate into the use of REST API and other web-service based technologies (GRPC,
Elasticsearch)

Investigate into frameworks for the thin client, such as Angular vs React, Nodejs, Leafelt.s, charts.js
Additionally Web scraping may be needed if certain website that don’t either have an API or JSON
for the data needed.

https://www.sas.com/en_gb/insights/analytics/what-is-natural-language-processing-nlp.html
https://blog.algorithmia.com/introduction-natural-language-processing-nip/
https://gerardnico.com/data_mining/algorithm
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.kdnuggets.com/2015/05/top-10-data-mining-algorithms-explained.html
https://www.datasciencecentral.com/profiles/blogs/artificial-neural-network-ann-in-machine-learning
http://scikit-learn.org/stable/index.html

https://grpc.io/docs/




Summarise the project objectives and outputs in about 400 words.

These objectives and outputs should appear as tasks, milestones and deliverables in your project plan.
In general, an objective is something you can do and an output is something you produce — one leads
to the other.

To produce a thin web client that provides a dashboard that provides tangible and useful information
to users such as; Their current price (Updated every 5 minutes), exchange rates, network hashrates,
historical price data. It will also display statistics about sentiment analysis conducted on social media
about the currency, graphical predictions on what the price may be, in a given time, and will also
compare this to other currencies for aid in investment.

To produce significant research into the topics in and around data mining, machine learning and
Artificial Neural network and the underlying tasks and algorithms used, the efficiency, drawbacks
and advantages of each to identify the most suitable for the use in this project.

To produce a system that analyses a data set obtained through social media feeds and posts on news
sites regarding crypto currencies. It should perform sentiment analysis using Natural Language
processing and analysis techniques to identify features and identifies the type of sentiment in the data
and categorises it for machine learning.

To utilise machine learning techniques and algorithms to produce a system that learns from historical
data to predict to an extent the possible future price of a given currency. To compare this with the use
of an Artificial Neural Network and to analyse the drawbacks of both.

Initial project specification - list key features and functions of your finished project.
Remember that a specification should not usually propose the solution. For example, your project
may require open source datasets so add that to the specification but don’t state how that data-link
will be achieved — that comes later.

The finished project should provide a thin client single page application. This will provide a means to
users the ability to view various statistics on crypto currencies on a dashboard that incorporates text
analysis through natural language analysis, and will utilise various machine learning and data mining
techniques to provide price predictions to the users. The nature and level of this will depend on the
research conducted into the areas of data mining, machine learning, natural language processing and
artificial neural networks, along with the algorithms used.

The data set will be created from scratch for this project as it will require the gathering of data from
numerous sources and performing text analysis on them to for the data needed. Data sets for the
characteristic and data for the currencies can be obtained from pre-existing data sets such as:
https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory
https://www.kaggle.com/jessevent/all-crypto-currencies

Web scraping may be included if certain news/social media websites do not provide an APl or RSS
feed for the analysis engine to perform text analysis on

Additionally, there will be a server between the analysis/prediction engine and the thin client that will
maintain a database, either SQL or NoSQL, that will hold statistics about the currencies and data
about the price predictions about the currencies. It will not hold any of the data used in the analysis
engine, as this database will only hold data available to the end users.




Describe the social, legal and ethical issues that apply to your project. Does your project
require ethical approval? (If your project requires a questionnaire/interview for conducting
research and/or collecting data, you will need to apply for an ethical approval)

The project will not be handling any user related data, therefore it does not need ethical approval.

Identify and lists the items you expect to need to purchase for your project. Specify the cost
(include VAT and shipping if known) of each item as well as the supplier.
e.g. item 1 name, supplier, cost

None Needed

State whether you need access to specific resources within the department or the University e.g.
special devices and workshop

Possibly a server to host the database and analysis engine on to perform the computation necessary,
and a server to host the thin client.




SECTION 3 - Project Plan
3.1

Project Plan

Split your project work into sections/categories/phases and add tasks for each of these sections. It is
likely that the high-level objectives you identified in section 2.2 become sections here. The outputs from
section 2.2 should appear in the Outputs column here. Remember to include tasks for your project
presentation, project demos, producing your poster, and writing up your report.

s Effort
Task No. Task description Outputs
(weeks)
1 Background Research
To identify the type of API/RPC
11 Investigate into RPC frameworks and REST APIs 0.3 framework that would be most
suitable
R rch into Natural Lan r ing and analvsi To get an understanding of how
12 ese? ch into Natural Language processing and analysis 0.5 NLP works and how it could be
techniques used
13 Research into the use of machine learning — types and 05 To grasp how ML paradigms work
' algorithms ' and how this project will use it
Research into the application of Neural Networks — To identify whether there will be a
14 K £ using th 0.3 need for a neural network or ML
drawbacks and advantages of using them paradigms can be used instead
Research techniques for storing and processing large aTr? d”&ﬁi;;ﬁ”iéhjszs;s’tssfel';f:on
15 amount of data, such as Hadoop, spark or Elasticsearch 1 more viable solution than standard
utilities. ML practices
16 Identify appropriate libraries for data modelling and 1 To identify what libraries will aid in
' visualisation, NLP and Machine Learning the construction of this project
To identify what frameworks the
. . . . thin client should be used with,
1.7 Investigate into frameworks for the front-end thin clients 0.3 along with drawbacks and
advantages
To understand the application of
1.8 Research web scraping techniques 0.3 these techniques and learn how to
apply them
2 Analysis and design
2.1 Resolve issues discovered by background research 0.2
Identify limitations discovered from research and
2.2 . . 0.1
what is not feasible
2.3 UML Diagrams/ XUML 0.2
24 Wire frames for frontend 0.1
25 Data Flow 0.1
2.6 User Flow 0.1
3 Develop prototype
3.1 Develop thin client 2
3.2 Develop analysis Engine 4
3.3 Develop Prediction Engine 3
34 Develop Unit tests 2
4 Testing, evaluation/validation
4.1 Unit testing 1
4.2 Acceptance Testing 0.8
4.3 User testing 0.8
5 Assessments
51 write-up project report 2 Project Report
5.2 produce poster 0.5 Poster
5.3 Log book 0.5




TOTAL Sum of total effort in weeks | 21.9




SECTION 4 - Time Plan for the proposed Project work
For each task identified in 3.1, please shade the weeks when you’ll be working on that task. You should also mark target milestones, outputs and key decision points.

To shade a cell in MS Word, move the mouse to the top left of cell until the curser becomes an arrow pointing up, left click to select the cell and then right click and
select ‘borders and shading’. Under the shading tab pick an appropriate grey colour and click ok.

START DATE: 10/2018 <enter the project start date here>

Project Weeks

i 0-3 3-6 6-9 9-12 12-15 | 15-18 | 18-21 | 21-24 | 24-27 | 27-30 | 30-33 | 33-36 | 36-39
Project stage

1 Background Research

Investigate into RPC frameworks and REST
APIs

Research into Natural Language processing

Research into the use of machine learning —

Research into the application of Neural

Research techniques for storing and

Identify appropriate libraries for data

Investigate into frameworks for the front-

Research web scraping techniques

2 Analysis/Design

Resolve issues discovered by background

Identify limitations discovered from

UML Diagrams/ XUML

Wire frames for frontend

Data Flow

User Flow




3 Develop prototype.

Develop thin client

Develop analysis Engine

Develop Prediction Engine

Develop Unit tests

4 Testing, evaluation/validation

Unit testing

Acceptance Testing

User testing

5 Assessments

write-up project report

produce poster

Log book




RISK ASSESSMENT FORM

Assessment Reference No.

Assessment date

Persons who may be affected by
the activity (i.e. are at risk)

Andrew Sotheran

Area or activity
assessed:

SECTION 1: ldentify Hazards - Consider the activity or work area and identify if any of the hazards listed below are significant (tick the boxes that apply).

i Use of portable Vehicles /driving IR s .

Fall of person (from 6 Lighting levels 11. | tools / equi t 16. | atwork 21 26 Occupational stress
work at height) g - | tools /equipmen - | atwor " | chemicals, dust :
Fall of obiects Heating & Fixed machinery or Outdoor work / Hazardous Violence to staff /

! 7. | ventilation 12. | lifting equipment 17. | extreme weather 22. | biological agent 27. | verbal assault
Slips, Trips & Layout , storage, Fieldtrips / field Confined space / . .
Housekeeping 8. | space, obstructions 13. IACESIEVEEAE 18. | work 23. | asphyxiation risk 28. O D e
Manual handling . . — - Condition of Lone working /
R 9. Welfare facilities 14, Noise or Vibration 19, Radiation sources 24. | Buildings & glazing 29. | work out of hours
Display screen Electrical Fire hazards & . . Other(s) - specify
equipment 10, Equipment X 15. | flammable material 20. Wi i (ESE 25. ecdisbaietey 30.

10




SECTION 2: Risk Controls - For each hazard identified in Section 1, complete Section 2.
Hazard | Hazard Description | Existing controls to reduce risk Risk Level (tick one) | Further action needed to reduce risks
No.
High | Med | Low (provide timescales and initials of person responsible)
Cable management is at a minimum, none are x | Sufficient cable management needed, cables
o ) currently properly cable managed and kept out tied together and moved out of way of feet
3 Tripping over wires of way
Current screen contrast and brightness is X To have periodic breaks from the screen
. acceptable
5 Eye strain from
looking at a
monitor
Name of Assessor(s) SIGNED
Review date

11




Health and Safety Risk Assessments — continuation sheet

SECTION 2 continued: Risk Controls

Assessment Reference No

Continuation sheet number:

Hazard | Hazard Description | Existing controls to reduce risk Risk Level (tick one) | Further action needed to reduce risks
No.
High | Med Low | (provide timescales and initials of person responsible for
action)
Name of Assessor(s) SIGNED

Review date

12




Appendix B - Log book

The log book for this project is a physical book and was handed to the School of
Computer Science. Due to being a physical book, it cannot be inserted here.
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